

	 1	

"The	 Software	 Tools"	
Unix	 Capabilities	 on	 Non-‐Unix	 Systems	

Deborah	 K.	 Scherrer,	 Philip	 H.	 Scherrer,	 Thomas	 H.	 Strong,	 &	 Samuel	 J.	 Penny	
	
BYTE	 Magazine,	 November	 1983,	 p.	 430	
	 	 	
(Retyped	 by	 Emmanuel	 ROCHE.)	

1	 The	 Software	 Tools	 package	
-‐	
	
The Software Tools package is a set of programs and subroutines that provides the
power and elegance of Bell Laboratories' Unix on non-Unix computer
systems. The tools offer Unix-like program development features that
complement systems ranging from microcomputers to mainframes.

Available in various forms from several sources, the Software Tools package includes
more than 60 utility programs, a command interpreter (shell), and a large programming
library.

Code sharing, coupled with early feedback from users, has allowed developers
to build on each other's work and has produced a dynamic environment in which new
ideas are rapidly tried and proven. The natural selection process that
results produces high-quality, useful utilities that have been tried, improved, tested,
and accepted by many users with varying needs and a variety of systems.

The Tools

The Software Tools utilities provide a framework for executing most common
computing tasks. Each tool is a powerful but general software module designed
to do one thing well.

The tools are easy to learn and use. They perform functions such as organizing
and manipulating files, creating, editing, and rearranging text, examining
files, preparing documents, and transforming language and data. Frequently
used tools are:

• diff Determines the differences between 2 files
• ls Lists the file names in a directory
• ar Maintains multiple small files nested inside a larger one

	 2	

• sort Sorts lines of a text file in several ways
• find Locates text patterns in a file using a flexible expression syntax
• field Rearranges data columns in a file
• sedit Performs serial editing functions on a file
• format Formats a document for publication or distribution

The complete set of Software Tools provides most of the functional
capabilities of the Unix tools. Table 1 is a list of the tools and their Unix
equivalents.

Table 1: The Software Tools and their Unix equivalents.

Text Manipulation

Software Tool Unix Utility Description
------------- ------------ -----------
e, edin ed Editor
sedit sed Stream editor
ch gres Change text patterns
tr tr Transliterate characters
find grep Locate text patterns
fb Find text patterns in blocks of lines
isam Build index sequential access list
xref Cross-reference of symbols
field Manipulate fields of data
mcol pr -n Produce multicolumn output
sort sort Sort lines
lam Laminate lines of files together
uniq uniq Strip duplicate lines
rev rev Reverse order of characters
number Number lines
detab Convert tabs to spaces
entab Convert spaces to tabs
crypt crypt Crypt and decrypt files
cpress Compress files
expand Expand compressed files
os Convert backspaces for printing
 col Convert reverse line feeds for printing
pl Print specific lines in file
 awk Pattern scanning and processing language
 join Join lines with identical fields
 prep Put words on single lines

	 3	

Manipulating Files

cat cat Concatenate/copy files
crt Paginate files to terminal
cp cp Copy files
pr pr Paginate files for printing
show Show all characters (control too)
tail tail Print last lines of files
tee tee Copy input to output and named files
includ Include files within files
split split Split up file
cmp cmp Simple file compare
diff diff Differential file compare
 diff3 3-way differential file compare
comm comm Print lines common to 2 files
ll Print longest, shortest line lengths
wc wc Count words, characters, lines
 dd Convert and copy a file

Managing Files and Directories

ls ls List files
cd cd Change directory
pwd pwd Print working directory name
mv mv Move/rename file
rm rm Remove files
ar ar Archive files
n.a. chown, chgrp Change owner/group of files
n.a. chmod Change mode of file
 find Search for files
 ln Link files
 mkdir Make a directory
 rmdir Remove a directory
 sum Validate a file (checksum)
 tar, tp Tape archiver
 touch Update last-change-date
 file Determine file type

Document Preparation

format roff, nroff Text formatter

	 4	

 troff Text formatter for typesetter
form Form letter generator
spell spell Spelling checker
lookup look Look up words in dictionary
kwic, unrot ptx Generate permuted index
 deroff Remove nroff commands
 eqn Generate equations for nroff
 tbl Generate tables for nroff
 refer Find and insert literature references
 pubindex Make index for "refer"
 tc Translate troff output for Tektronix 4015

Process Control

sh sh Command-line interpreter (shell)
run Run a tool (without shell)
which Print full pathname of command
reset Reset system after media change
logout logout Log out of shell
n.a. at Run process at specific time
n.a. login Log into system
n.a. kill Kill (background) process
n.a. nice Run process at low priority
n.a. ps Process status
n.a. sleep Suspend termination for specified period
n.a. wait Wait for completion of a process
 time Time a process
 prof Display profile data

User Support/Information Retrieval

dc dc Desk calculator
date date Print/set time and date
echo echo Print command-line arguments
man man Print manual entry
n.a. passwd Set/change password
n.a. tty Get terminal name
n.a. who List users on system
 true, false Commands which return true or false
 basename Print basename of file
 cal Print calendar
 calendar Remind user of appointments

	 5	

 expr Evaluate arguments as an expression
 factor Factor a number
 test Condition command
 units Quantity conversions

Language Translation/Program Development
--

macro m4 Macro processor
ratfor ratfor RATFOR preprocessor
fsort Sort FORTRAN declarations
rc rc RATFOR, FORTRAN, link, load
fc fc FORTRAN, link, load
ld ld Load
tsort tsort Topological sort
yacc yacc Compiler-compiler
lex lex Lexical analyzer
 adb Debugger
 as Assembler
 bas BASIC interpreter
 bc Arbitrary-precision arithmetic language
 cc, pcc C compile
 lint C syntax check
 F77 FORTRAN compile
 struct Convert FORTRAN-66 to RATFOR
 lorder Find ordering relation for library
 nm Print name list of object files
 od Octal dump
 size Print size of object file
 strip Remove symbols and relocation bits
 ranlib Convert archives to random libraries

Miscellaneous

 graph Draw a graph
 plot Graphics filter
 spline Interpolate smooth curve
 tk Paginate for the Tektronix 4014
n.a. write Send message to another user
n.a. mesg Permit or deny messages
tcs sccs Test maintenance system
msg mail Send/receive mail
 learn Computer-aided instruction about Unix

	 6	

 lpr Print spooler
 make Maintain program groups
 cu Call another Unix machine
 uucp Unix-to-Unix copy
 uux Unix-to-Unix command execution
 stty Set terminal options
 tabs Set terminal tabs

Key:
n.a: -- not applicable to single user/single process systems like CP/M.
The capabilities of a Software Tool and a Unix utility may not always be
exactly the same.

The	 Shell	

The Software Tools shell is a command interpreter that reads lines from the
user terminal or a file and interprets them as requests to execute programs.
The shell includes mechanisms to redirect the input and output of the tools to
the user terminal, files, or other programs. It also enables the user to group
commands together to make up new commands. The ease of generating
and executing complex user-tailored commands from simple ones distinguishes
Unix and the Software Tools from other systems in which utilities are often clumsy.
The Section "2 Software Tools Shell" describes the shell in greater detail.

The	 Library	

The Software Tools library provides a framework for accessing system services
by both the tools and user programs. The library includes basic system
operations as well as groups of functions satisfying common programming needs.
These include:

 - Unix-type I/O (input/output) functions
 - file and directory manipulation
 - dynamic memory allocation
 - string manipulation
 - linked-list handling
 - symbol-table creation
 - text-pattern matching
 - data-type conversion and manipulation
 - date and time formatting
 - command-line argument handling
 - process control

Table 2 describes the library functions in detail.

	 7	

Table 2: The functions of the Software Tools library.

Symbol Definitions (ratdef)

definitions Standard RATFOR definitions

File Manipulation

*amove Move (rename) a file
*close Close (detach) a file
*create Create a new file (or overwrite an existing one)
*gettyp Get type of file (character or binary)
*isatty Determine if a file is a terminal
*mkuniq Generate unique file name
*open Open an existing file for reading, writing, or both
*remove Remove a file from the file system

I/O

 fcopy Copy one file to another
*flush Flush output buffer for file
 getc Read character from standard input
*getch Read character from file
*getlin Read next line from file
*note Determine current file position
*prompt Prompt user for input
 putc Write character to standard output
*putch Write character to file
 putdec Write integer in field
 putint Write integer in field on file
*putlin Output a line onto file
 putstr Write string in field on file
*readf Binary read from a file
*remark Print single-line message
*seek Move read/write pointer
*setmod Set character device mode
*writef Binary write to a file

Process Control

	 8	

*endst Close all open files and terminate program execution
*exec Execute task
*initst Initialize all standard files and common variables

Directory Manipulation

*closdr Close directory
*cwdir Change working directory
*gdraux Get auxiliary directory information
*gdrprm Get next directory entry
*gwdir Get name of current working directory
*opendr Open directory for reading

String Manipulation

 addset Add character to array if it fits, increment pointer
 addstr Add string to array if it fits, increment pointer
 concat Concatenate 2 strings together
 ctoc Copy string-to-string
 equal Compare str1 to str2
 gettok Parse tokens
 getwrd Get non-blank word from array, increment pointer
 index Find character in string
 length Compute length of string
 scopy Copy string from one array to another
 sdrop Drop characters from a string
 skipbl Skip blanks and tabs in array
 sktok Skip over tokens
 slstr Slice (take) a substring from a string
 stake Take characters from a string
 stcopy Copy string, increment pointer
 stncmp Compare first n characters of strings
 stncpy Copy n characters from one array to another
 strcmp Compare 2 strings
 strim Trim trailing blanks and tabs from a string
 type Determine type of character

Character Conversion

	 9	

 clower Convert character to lower case
 ctoi Convert string to integer, increment pointer
 ctomn Translate ASCII control character to mnemonic
 cupper Convert character to upper case
 esc Check for escaped character
 fold Convert string to lower case
 gctoi Generalized character-to-integer conversion
 gitoc Generalized integer-to-character conversion
 itoc Convert integer to character string
 lower Convert string to lower case
 mntoc Convert ASCII mnemonic to character
 upper Convert string to upper case

Pattern Matching

 amatch Look for pattern matching regular expression
 getpat Encode regular expression for pattern matching
 makpat Encode regular expression for pattern matching
 match Match pattern anywhere on line

Command Line Handling

*delarg Delete a command-line argument
*getarg Get command-line arguments
 gfnarg Get next filename argument
 query Print command usage information

Dynamic Storage Allocation

*dsfree Free a block of dynamic storage
*dsget Obtain a block of dynamic storage
*dsinit Initialize dynamic storage

Symbol Table Manipulation

 delete Remove a symbol from symbol table
 enter Place symbol in symbol table

	 10	

 lookup Get string associated with symbol from hash table
 mktabl Make a symbol table
 rmtabl Remove a symbol table
 sctabl Scan all symbols in a symbol table

Linked List / Stack Handling

 maklst Create and initialize linked list
 frelst Remove a linked list and free allocated memory
 push Push an item onto the top of the list/stack
 pop Pop an item from the top of the list/stack
 inject Inject a new item into a linked list
 xtract Read an item from a linked list
 prvnod Get previous node pointer
 nxtnod Get next node pointer
 remod Remove a node from a linked list

Date Manipulation

 atodat Convert ASCII characters to integer date
 fmtdat Convert date to character string
*getnow Get current date and time
 wkday Get day-of-week corresponding to month-day-year

Error Handling

 cant Print "name: can't open" and terminate execution
 error Print single-line message and terminate execution

(* indicates that the routine is system-dependent and has been implemented
by Carousel Microtools for CP/M and MS-DOS.)

The	 Tools	 or	 Unix?	

Although the Software Tools provide many of the features of Unix, they are not
an exact copy of Unix. They exist alongside the local operating system and
provide many of the desirable aspects of Unix in situations where using Unix
is impossible or inappropriate. For instance, if you do not want to pay Unix's
high price, if you want to use software packages that are not available in
Unix versions, or if a Unix implementation is not available for your hardware,

	 11	

the Software Tools can provide the power and elegance of the Unix interface.

Let us look at the Software tools movement and considerations that have made
the tools successful.

The	 Software	 Tools	 Movement	

In 1976, Kernighan and Plauger wrote Software Tools (see Reference 3). Their
goal was to teach good programming style based on their experiences with
Unix at Bell Laboratories. They used pared-down versions of Unix
Utilities rewritten in RATFOR (Rational FORTRAN), a C-like preprocessor language
(see Section "3 What Is RATFOR?"). The programs and the RATFOR preprocessor
were made available on magnetic tape. The book and tape were the seeds from which
the tools movement developed. The movement arose independently at several
major research laboratories and universities.

The tools were of immediate interest to researchers and users, and the programs were
implemented on numerous computers. As users began to experiment with and enhance
the programs, they began to realize that the tools offered more than a useful set of utility
programs. Researchers, primarily at Lawrence Berkeley Laboratory (LBL), expanded the
original package to include a powerful subroutine library, a Unix-like shell, and many
more of the Unix utilities. By providing all 3 levels (shell, utilities, and library), the tools
now offered a portable, uniform interface with the functionality of Unix. The package
was implemented on the diverse assortment of LBL machines and on many machines to
which the researchers had network access. The result was Unix functionality on non-Unix
systems and a consistent user interface across many different systems (see Reference 1).

One reason the Software Tools have been so widely accepted is their portability.
The tools can be implemented on virtually any machine. This portability was achieved
by using a programming language that was available on all machines and by isolating
system dependencies into "primitive" function calls that must be implemented separately
for each different system.

With certain data-type manipulation conventions and other programming details, this
portability has enabled the package to be implemented on more than 50 operating
systems. Table 3 provides a partial list of manufacturers offering computers on which the
tools have been implemented.

Table 3: A partial list of manufacturers on whose machines the Software
Tools package has been implemented to varying degrees of sophistication.

ACOS
Amdahl

	 12	

Apollo
AN/UYK
Burroughs
CDC
Cray
Data General
DEC
FACOM
GEC
HP
HITAC
Honeywell
IBM
Intel
Interdata
Modcomp
Multics
NCR
Perkin-Elmer
Prime
Rolm
SEL
Tandem
Univac
Wang
Xerox
Machines running CP/M
Machines running MS-DOS
Machines running Unix

Which	 Language	 Is	 Best?	

Computer languages are judged on their ability to solve specific problems;
therefore, the best language for the Software Tools package was the one that
could most adequately fill the following requirements:

• Availability - The language had to be available on almost every machine.

• Suitability - The language had to be appropriate for textual (as opposed to
numerical) applications; it had to be powerful enough to handle the support
libraries that provide the necessary file access, I/O process control, and other
system-support services.

• Quality - The language had to be high-level, easy to read and understand, easy to

learn, and powerful enough to solve applications problems.

	 13	

FORTRAN filled the first requirement, fell down a bit on the second, and provided
little of the third. C met the second and third requirements but was not usually available
on both microcomputers and larger machines. Pascal met the third requirement but was
no more commonly available than C and was not appropriate to the support of large
libraries and moderately complex bodies of code (see Reference 2). Several other
state-of-the-art languages were appealing but not generally available. Thus, no single
language met all the requirements, and a compromise was necessary. The RATFOR
language preprocessor was chosen because it provided the control structures,
readability, and elegance of C and was translatable into FORTRAN (the language
available on most systems). A C-like support library was developed to supplant
FORTRAN'S incomplete textual, file manipulation, and I/O capabilities. Even
Though FORTRAN is used at the RATTOR base level, the user is insulated from
FORTRAN just as the user of any high-level language is insulated from the machine
language.

The choice of language was not critical to the approach. In fact, for the person using
the tools, the implementation language is unimportant. Only the tools implementer and
people developing new tools with the library ever need to use the language. Had the tools
been designed solely for the microcomputer environment, C might have been a more
appropriate choice. With the computer industry rapidly developing new machines and
more elegant languages, the Software Tools community is now re-evaluating the
original choice of language and considering mechanisms for making the tools available
in other languages as well.

Primitives	 Isolate	 Machine	 Dependencies	

In the Software Tools package, system dependencies are isolated in the primitives, a
set of routines that make up the tools' interface to the operating system. The primitives
provide standardized system services such as file manipulation, I/O, process control, and
dynamic memory allocation. The tools and their subroutines access system services
through these primitives. Tool source code can be moved from system to system without
change. When the tools package is moved to a new system, only the primitives must be
changed or rewritten.

The original implementers of the tools issued 2 prime directives to assure compatibility
among a wide variety of operating systems. First, they decided to use the file types of the
operating system. Internal file formats specific to the machine are hidden from the user
by the primitive functions, allowing both local utilities and Software Tools programs to
read and write the same files and providing a standardized way to access files on all
systems. Second, changes to the local system, or interference with it to implement the
package, are discouraged. Such changes, combined with the local system's
idiosyncrasies, would make the package unstable in new system releases.

	 14	

The primitives address the issue of machine efficiency; they minimize the demands of
the software upon scarce system resources like memory or central processor time. For
example, the utilities of the Software Tools package are oriented toward text processing
and program development (writing source code, documentation, data preparation, etc.).
These utilities are characteristically limited by I/O rates. Because the I/O capabilities
are isolated in the primitives, the effect of this problem can be reduced through
efficient implementation of the I/O primitives. Because all utilities access resources
through the primitives, they automatically benefit from such optimization.

The	 Software	 Tools	 Users	 Group	 (STUG)	

The need for cooperation among implementers and users of the tools led to the formation
of the Software Tools Users Group at Menlo Park, California. It originated at the
Lawrence Berkeley Laboratory and was initially funded by the Department of Energy.
Since its inception in 1978, the group has become an international body performing the
following functions:

• Establishing and publishing standards for the primitives and tools and supporting an

ongoing standards committee
• Collecting and distributing information on current developments to avoid

duplication of effort
• Collecting and evaluating new utilities, extensions, and variants
• Holding semi-annual meetings in conjunction with the Usenix Unix users group
• Publishing a newsletter and software catalog
• Distributing tapes containing collections of utilities from different organizations

Much of the tools' source code is now in the public domain and freely distributed.
The primitives, however, are generally developed, licensed, and maintained by vendors.

The standardization procedure used by the tools group is unusual. New utilities are
collected and distributed early in their development phase, allowing users to
experiment with new ideas and reject those that prove unportable or functionally
undesirable. Code sharing also allows users and developers to glean ideas from new
offerings and incorporate them into their own developments. As ideas are distilled and
utilities enhanced or extended, the utilities are redistributed, and those receiving
popular support are eventually returned to the tools group. There, they pass to the
Implementers Committee, which makes final decisions on acceptance and
standardization. Thus, standards are always based on ideas or utilities tested and proven
by the community, rather than on newly-designed products or untested ideas.

The sharing of code and feedback from users enables developers of new tools to build on
each other's work, creating an environment in which new ideas can be quickly and
thoroughly tested. The sharing results in natural selection of useful tools that have been
tried and accepted by a large number of users with varying needs on many different
systems.

	 15	

The	 Present	 and	 the	 Future	

Development of the Software Tools is proceeding on 2 fronts: the basic package
is being implemented on new systems, and user interfaces are being extended. The
original package provided an environment for effective development of programs and
manipulation of textual data and materials. However, the tools approach is applicable to
most software projects, including those involving networks, database management,
graphics, and word processing. Among the portable packages being developed are
experimental shells, statistical analysis systems, electronic-mail systems, screen
editors, data-management packages, data-analysis packages, and source-code-
maintenance systems. The tools group is actively evaluating suggested enhancements
and extending the primitive set to provide as dynamic and creative an environment as
possible.

Some hardware manufacturers avoid the Software Tools package because easy
portability to a competitor's hardware is obviously bad for business.
Increasingly, however, independent companies are marketing specific system
implementations of the tools. These firms typically implement the primitives and
provide maintenance and upgrade support. The high-level source code
(utilities and portable sections of the library) is left unlicensed, so the Software Tools
Users Group handles variations, extensions, and standards (a compromise between the
need for vendor support and the desire for user control).

The Software Tools package is already running on most mini-computer and
mainframe systems, and extensions into the microcomputer world have begun.

Implementing	 the	 Tools	

Writing programs in a language that is available on many systems is insufficient;
you must also define an interface layer that isolates an application program from the
details of any particular system. The primitives form the tools' interface layer and are the
key to their success. They are the only allowed connection between the tools and the
underlying operating system. Porting, or adapting, the tools to a new operating system
involves writing the code for the primitives for that new system.

The primitives are more than just a collection of subroutines; they provide a complete
environment for the tools. In a sense, they coordinate the "world view" of the tools with
the world view of the host operating system. The task is simple if the tools and the
new system have similar views of the programmer's environment; the task is
difficult if the new system has a different view. For example, it took less than a week
to write and test the tools' primitives for Unix because Unix's view of the programmer's
environment is similar to that of the tools. But implementing the tools' primitives on

	 16	

CP/M and MS-DOS (which are based on very different views) took more than a year.

When implementing the primitives, it is essential to keep in mind the 2 prime directives:
maintain correspondence of file types and avoid interfering with or changing the host
system. An example of the relationship between the tools and the host system is
illustrated in the implementation of the Carousel Toolkits on CP/M (see Figure 1).

 HIERARCHY OF PRIMITIVES

 ┌────────────��
��────────��
��─────�
───�
──
�─
��

 │ SHELL
��
 ├ - - - - - - - - - - - - ┬───�
───�
──
�─
��

 │ PORTABLE SOFTWARE TOOLS │
 �

 │ UTILITY PROGRAMS │
 �

 ├ - - - - -┬- - - - - - - ┤
 �

 │ PORTABLE | │ NON-TOOL
 �

 │ UTILITY | │ APPLICATI
 �

 │ LIBRARY | │ PROGRAMS
 �

 ├ - - - - -┘ │
 �

	 17	

 │ │
 �

 │ PRIMITIVE LIBRARY │
 �

 │ │
 �

 ├────────────��
��────────��
��─┴───�
───�
──
�─
��

 │ BDOS
��
 ├────────────��
��────────��
��─────�
───�
──
�─
��

 │ BIOS
��
 ├────────────��
��────────��
��─────�
───�
──
�─
��

 │ HARDWARE I/O
��
 └────────────��
��────────��
��─────�
───�
──
�─
��

	 18	

Figure 1: The hierarchical dependence of interfaces in the CP/M-80 version of the tools.
At the CP/M level, only the BIOS (basic input/output system) knows how to do direct
hardware input and output, and only the BDOS (basic disk operating system) knows
how to talk to the BIOS. These clean divisions were the key to the early success in
moving CP/M to many different types of hardware. The Software Tools are built in
isolated layers in the same way. Note that only the primitive functions know how to
talk to the BDOS. The primitives are the communication channel between the portable
tools and a specific operating system, such as CP/M or MS-DOS. The tools themselves
can use the primitives or the library of utility routines that are also part of the tools
package. The clean boundaries between the various interface layers in a system such as
this are very important for maintaining clean portable programs. Any time these
separations are violated, the resulting program may prove expensive to maintain and
difficult to move to new machines.

File	 and	 Directory	 Names	

The Software Tools view all I/O operations as actions on named files. As in Unix, use
of files from within programs must be as device independent as possible because the
program does not know whether the I/O is being done with a terminal, file, or another
program. The file to be used is specified when the program is run instead of when it is
compiled. When the host provides some sort of directory structure, it should appear to the
user as the Unix model of a hierarchical directory structure does. These requirements
have effects at both the RATFOR library level and at the tools execution level. For
example,

 data The file "data" on the current directory
 /b/data The file "data" on drive B in the current user area
 /2/a/data The file "data" in user area 2 on drive A
 /tty The programmer's terminal
 /nul The "bit bucket", a place for unwanted output
 /lst The printer

File names of these forms can be used anywhere a file name is needed. For example, in
the tools open primitive, the statement

 fd = open ("/0/c/foobar.dat", READWRITE)

results in the file /0/c/foobar.dat being opened in a mode allowing random reads and
writes. The command

 diff /1/b/prog.bas prog.bas

displays the differences between the version of prog.bas on drive B in user area 1 and
the version in the current directory.

	 19	

By putting CP/M's user-area number at the higher level in the hierarchy, a programmer
can operate within a given area on several drives without specifying the user area. In
accordance with the prime directive, a CP/M style of directory naming is also recognized
(e.g., 1b:prog.bas). In addition, the temptation to further follow the Unix style and allow
user-named subdirectories, as opposed to the hard-wired CP/M user/disk names, was
tempered by the prime directive's requirement that all tools files be available on the host
system with recognizably similar names.

Memory	 Allocation	 and	 Disk	

The tools package includes primitives to dynamically allocate memory areas for
temporary use within a program. This feature has proven easy to provide on single-user
systems such as CP/M and MS-DOS, where the programmer has access to all memory
not occupied by the program or operating system. However, bulk- storage I/O devices,
usually floppy disks, are so slow that it is desirable to use as much high-speed memory
as possible for a cache of recently-used or soon-to-be-used data. These 2 requirements
force the dynamic-‐storage primitives	 for	 CP/M	 to	 share	 the	 memory	 with	 the	 I/O	
primitives.	 This provides the	 tools	 with	 dynamically	 available	 storage	 while	 using	
all	 remaining memory to	 speed	 up	 disk	 operations.

The Software Tools package also enables a user to quickly access the large collection
of the tools' utilities on a small system. Sixty non-trivial tools could easily occupy a large
amount of disk space. Unlike integrated programs in which all functions are available to
the user within one large complex program, the tools are a collection of single-purpose
programs, each of which must be loaded into memory when needed. To provide both
fast program load times and small disk-space usage on CP/M, the tools were stored on
disk as overlays of each other. Because they all share the common primitives, the
primitives need be loaded into memory only once. When a tool program is run, only the
part of the program that is different from one tool to another need be loaded. This has
proved effective in reducing disk usage and program load time.

Process	 Control	

The most difficult primitives to implement on single-user microcomputer operating
systems are for process control. Unix views the world as process- rich -- a place in
which processes are created for each command. The single- user CP/M system, on the
other hand, supports only one process. To provide a Unix-like environment in this case,
the primitives must emulate multiple processes. The only practical way to simulate
several parallel processes on a small-memory, floppy-disk-based system is by a sequence
of programs that are not executed simultaneously.

Unix enables process creation and program execution by the function pair fork and exec
(see Reference 4). Fork creates a clone process and exec overlays the current process
with a new program. The most common sequence in Unix is

	 20	

 fork - wait - continue (in the parent process)
 fork - exec - die (in the child process)

The standard tools package provides a model of this sequence in the spawn primitive.
Spawn executes a program by creating a child process and allowing the parent to wait for
its completion. Because of the relatively slow, low-capacity disk storage available on
the CP/M and MS-DOS systems, the spawn primitive has been simulated with a Unix-
like exec. Therefore, the portable shell could not be used, and a new shell was written
that uses only exec and creates a chain of programs that always end with a new
invocation of itself. This new shell can also be used on other systems where process
generation is allowed but is restricted or slow.

The spawn mechanism is different from those used by other command-interpreter
replacements for CP/M that always expect to reside in memory. The
Software Tools utilities are loaded quickly because they use the overlay technique.

Conclusion	

The Software Tools package provides the features of Unix when Unix is not desirable,
available, or appropriate. The tools incorporate many of the features of Unix:
elegance achieved through simplicity of style, consistency of use, modularity, and a
common-sense approach to programming tasks. A large and active Software Tools
Users Group has brought these tools to most operating systems.

Software Tools packages are available from several sources. A source code for the
utilities and specifications for the primitives is available from the Software Tools
Users Group (STUG) for a nominal charge. If you choose to purchase this code, you
must write your own primitives, which may be difficult.

You may be able to obtain a complete tools implementation for your system from
someone who has already done it for a similar system. The tools group distributes
versions for a few mini-computers and mainframe systems. These are provided without
support.

You may also purchase specific implementations of the Software Tools from a vendor.
If you do so, you should expect a version of the primitives optimized for your system,
with continuing support and contact with the Software Tools Users Group.

2	 Software	 Tools	 Shell	

(Carousel Microtool's CP/M Implementation)

	 21	

The shell is a command-line interpreter; it reads lines from the terminal or a file and
interprets them as requests to execute other programs.

Commands

In its simplest form, a command is the file name of a program to be run, followed by
arguments given to the program. The command name may specify any file in the
system. CP/M enables a user number to be part of the command (file) name. The
command may be a Software Tool or any other program. The shell searches for the
named file in a series of directories specified by the user in an environment file. When
the command is located, it is loaded into memory and executed. When the command is
finished, the shell resumes its own execution. For example, giving the command

 sort file1 file2

causes the shell to locate and execute the command sort. Sort, in turn, merges and sorts
the contents of the 2 named files and puts the output on the user's terminal.

I/O Redirection

Software Tools programs have 3 files automatically available to the user:

 1) standard input
 2) standard output
 3) standard error output

All 3 are assigned to the user's terminal, unless specifically redirected to disk files or
other devices. Redirection is specified by preceding the desired device or file name with a
special character:

 < file Read standard input from "file"
 > file Send standard output to "file"
 ? file Send standard error output to "file"
 >> file Append standard output to "file"
 ?? file Append standard error output to "file"

In the above example, the sorted output could be saved on a file:

 sort file1 file2 > sorted

or sent to the printer:

	 22	

 sort file1 file2 > /lst

(/lst is the tools form of the name for the printer).

I/O redirection is actually performed by each tool individually, rather than by the shell.

Pipes

A sequence of commands separated by vertical bars (|) causes the shell to execute each
command in sequence and arranges to have the standard output of each command
delivered as the standard input to the next command in the sequence. The sequence:

 sort list | uniq | crt

sorts the contents of file list. The sorted output passes to uniq, which removes extra
copies of duplicated lines. This output then goes to crt, which paginates output for
viewing on a terminal.

Command Separators

Commands need not be on different lines; instead, they may be separated by
semicolons:

 ar -x program rtn ; e rtn

extracts the member rtn from the archive file program and then enters the editor.

Background Processes

Unix shells enable processes to be started and have control returned immediately to
the shell. The new process continues running in the background, sharing resources with
the shell process. This mechanism is impossible to implement on single-process
systems such as those using CP/M. However, to simulate the mechanism in some
reasonable way, the Carousel shell saves any commands indicated as background
processes and executes them at the end of the session, when the user logs out of the shell
For example,

 format doc > /lst &

	 23	

formats the file doc and sends it to the printer at the end of the session (the ampersand
(&) indicates a background process).

Script Files

The real power of the Unix and Software Tools shells comes from the ability to generate
new commands by combining existing commands. This feature is possible because the
shell not only executes programs, but also treats script files (text files containing yet
more commands) as commands. These scripts may participate in pipelines, have their
I/O redirected, and appear in any context that a regular command may. Scripts may be
nested by referencing scripts that may, in turn, reference other scripts.

Scripts are useful for creating new commands and for grouping commands together
for multiple re-execution. For example, you could create a standard procedure by editing
file fix to fill it with the following commands for the shell:

 ar -x book chap1
 e chap1
 format chap1 | crt
 ar -u book chap1

Then, by typing fix, the system would extract chap1 from the archived file book; edit
chap1; send chap1 to the formatter and display it page-by-page on the terminal; and
finally update it in the archive file book.

Arguments can also be passed to script files. Character sequences of the form $n, where
n is between 1 and 9, are replaced by the nth argument to the invocation of the script. If
book has more than one section, the script could be written:

 ar -x book $1
 e $1
 format $1 | crt
 ar -u book $1

Then you could type:

 fix chap1
 or fix chap7
 or fix intro

to edit, view, and update the respective sections of book.

Script files can include inline explicit data that the tools can read as their standard input.
The special input redirection notation << is used to achieve this effect. For example, the

	 24	

editor takes its commands from standard input, normally the terminal. However, within a
shell script, commands may also be embedded this way:

 e file <<!
 (editing requests)
 !

(The ! is arbitrary; any character can be used.) The lines between <<! and ! are called, in
Unix terminology, a "here document"; they are read by the shell and made available to
the command as its standard input.

Finally, as an indication of the power of script files, Listing 1 shows an example of a
script file to show changes that have been made to command files of dBASE-II, a data-
base management program.

Listing 1: The alterations to dBASE-II command files.

Shell command file to show work done to dBASE-II command files.
usage: dbdiff dir (where dir is a backup directory)
"dir" should be specified in tools form, e.g. "/2/B"
dbdiff will print all new dBASE command files and
will print existing dBASE command files with any
changes marked with a "|" in the right margin.

Collect names of .cmd files in both directories.
ls .cmd >1.tmp
ls $1 .cmd >2.tmp

Find and print new dBASE commands.

Here, comm reports lines in 1.tmp which are not present in 2.tmp;
field changes that report into a series of print commands;
and sh then executes those print commands.
The "@" signs suppress the following newline,
effectively continuing the shell command across several lines.
comm -1 1.tmp 2.tmp | @
 field "pr >/lst $1" | @
 sh

Find existing dBASE commands and show changes.

Here comm reports files listed in both 1.tmp and 2.tmp;
e (the editor) changes each file name reported by comm
into a series of commands to:
print the file name;

	 25	

print the current date & time;
print the differences between the versions
in this directory and in the other directory;
and cat puts a few formatter commands into 4.tmp,
to be called upon by each line of 3.tmp.
comm -3 1.tmp 2.tmp >3.tmp
e 3.tmp <<!
1,$s~?*~echo & >/lst ; date >/lst ;
 diff -r $1/& & | format 4.tmp - >/lst~
w
q
!

cat >4.tmp <<!
 .nf
 .in 5 (ROCHE> WordStar does not like "dot commands"...)
 .rm 70
!

Finally, the shell runs the commands that e just prepared
and rm removes all 3 scratch files.
sh 3.tmp $1
rm 1.tmp 2.tmp 3.tmp

Environments

Like Unix, The Carousel shell maintains an environment file. This file contains
information about the user's system and needs, such as the date, tab settings, and the
directories in which to search for user programs or tools. The environment file is
available to all tools and is modified by a few. In addition, users are free to adjust the
information for their own needs.

Control Structures

Constructs of the nature:

 if ... then ... else ...
 while ... do ...
 for ... in ... do ...

aid in re-iteration and conditional execution within scripts. The Software

	 26	

Tools Users Group is currently standardizing the syntax for these shell control
structures.

3 What is RATFOR?

RATFOR (Rational FORTRAN) is the implementation language for the Software
Tools. It is closely patterned after C in its control structures, but it is compiled into
FORTRAN by the RATFOR preprocessor. The availability of FORTRAN allows
RATFOR to be easily installed on a wide variety of systems. In addition to being a
portable language suitable for implementing the Software Tools, RATFOR is a
convenient language for program development. The control constructs of RATFOR
are those of C, and the data structures are those of FORTRAN.

RATFOR's nature can most easily be described with examples of some actual code. A
file of standard definitions is automatically processed by the RATFOR compiler to define
new symbolic constants. A section of this file is:

 define (EOF, -1)
 define (EOS, 0)
 define (MAXLINE, 128)
 define (STDIN, 1)
 define (STDOUT, 2)
 define (character, integer)

Using these definitions, the following code is an example of a program in
RATFOR that finds the length of the longest line read from standard input:

 DRIVER
 character line (MAXLINE)
 integer getlin, length, len, size
 size = 0
 while (getlin (line, STDIN) != EOF)
 {
 len = length (line)
 if (len > size)
 size = len
 }
 call putint (size, 5, STDOUT)
 call putch (NEWLINE, STDOUT)
 DRETURN
 end

The macros DRIVER and DRETURN are also defined in the standard definition file and
are used to start and end all RATFOR programs.

	 27	

The following code is the same program written in C:

 #include <stdio.h>
 #defined (MAXLINE, 128)

 main()
 {
 char line[MAXLINE];
 int fgets(), strlen(), size = 0, len;
 while (fgets(line, MAXLINE, stdin))
 {
 len = strlen(line);
 if (len > size)
 size = len;
 }
 fprint(stdout, "%5d\n", size);
 }

The similarity between the RATFOR and C versions is obvious. Notice that the
RATFOR example consists almost entirely of standard FORTRAN statements
especially assignment statements and subroutine calls. The RATFOR compiler passes
these statements through to the FORTRAN version almost unchanged. What RATFOR
adds to FORTRAN are file inclusion, token substitution, macros for text replacement,
and the following control constructs:

 if-else for conditional execution,
 while, for, and repeat-until for looping,
 break and next for controlling loop exits,
 switch-case-default for selection of alternatives,
 braces ({}) for statement grouping.

RATFOR's syntax was intended to liberalize FORTRAN's syntax restrictions as much
as possible. As a result, RATFOR source code is naturally concise and reasonably
pleasing to the eye. RATFOR features are as follows:

 - free-form page layout
 - unobstrusive comments
 - use of <, <=, >, >=, ==, !=, etc. for comparison expressions
 - string data type
 - quoted character strings and character constants
 - define statement for symbolic constants
 - include statement for source-file inclusion
 - macro preprocessor for textual manipulation

	 28	

RATFOR code is often easier to read and understand than the corresponding section
of code as normally written in C. For example, the 2 following fragments of code
each copy a string from one buffer to another:

 # RATFOR version

 for (i=1; from(i) != EOS; i=i+1)
 to(i) = from(i)
 to(i) = EOS

 /* C version */

 char *t=to, *f=from;
 while (*t++ = *f++);

One could argue that a good C compiler sometimes produces faster code but, in large
programs, the readability of the RATFOR style is often an advantage over the more terse
C style.

4	 References	

1. Hall, Dennis, Deborah Scherrer & Joe Sventek
 "A Virtual Operating System"
 Communication of the Association of Computing Machinery,
 Volume 23, Number 9, Pages 495-502.

2. Kernighan, Brian W.
 "Why Pascal Is Not My Favorite Language"
 Bell Laboratories Technical Note #100, Murray Hill, NJ.

3. Kernighan, Brian W. & P. J. Plauger,
 "Software Tools"
 North Reading, MA: Addison-Wesley, 1976.

4. The Bell System Technical Journal,
 Volume 57, Number 6, Part 2 (July-August 1978).

