o~ M‘\

NUMBER 14

In this Issue

« What's New with STUG?
« HP3000 donation from Hewlett Packard
» Carousel MicroTools
« Ratfor - C translator
.+ Software Tools Catalogue
» Several New Sections:
« Scripts Corner
* Using the Tools
» Tape Info
« Editor's Notes...
+ Conferences
+ Changes in the Organization
» STUG asks you...
« Submitted Articles:

« "Software Tools in Pascai on Micros"
Willett Kempton, Princeton University

» Translating Ratfor to C -three articles
Clyde Lightfoot

» STUG Forms:

e Order Form, SPR Form, SW Submission
+ STUG Asks You...

» The Software Tools Catalogue Form

JAN 1986

As usual, we encourage you to participate in
making this newsletter an active one. We have
several columns you can contribute to, as well
as submitting your own articles.

-- the STUG Newsletter Editor

Editor's Notes

Once again we're back on the road with a
newsletter. This time we hope to make it a
quarterly (or bi-monthly newsletter). But in
order to really do so, we need to hear from
you!

We've started a few new columns to make it
easier for you to decide what to send us. You
can send us questions or hints regarding shell
scripts for Scripts Corner, or information
and problems with certain tape distributions for
Tape Info. We will even be starting a
Technical Notes column for those who wish
to submit more technical questions or hints
regarding the tools. If you're looking for
certain tools, or a certain distribution, let us
know and we'll print it in a column called
Finder. You can even just send a letter
discussing what you've done with the tools
and we'll publish it.

There have been only a few changes since the
last newsletter (Nov 84, #13) was published
by LBL. For starters, as many of you are
aware, LBL is no longer supporting STUG
(and thus no longer publishing the newsletter
for us). It took us awhile to get started in the
publishing business, as well as to find the time
to sit down and write some of these columns.
Many of the members helped by contributing
articles, and even volunteering to do a column.
Now that we've got the ball rolling, let's help
to keep it going.

STUG attended it's last USENIX conference
in Salt Lake City, June 85. We felt that the
“tools” community was getting smaller at this
conference, and that for now we would benefit
by concentrating our efforts on some of our
other goals. In doing so, however, we want to
find out what conferences he “tools”
community attends. This is where the
questionaire STUG Asks You comes in. It
would be very helpful for us if you would take
the time to answer the questionaire and return it
to us.

Don't Forget STUG's New Address:
140 Center Street

El Segundo, CA 90245
(213) 322-2574

Software Tools Communications

Notice:

Since there has been such a delay in the

_publication of the newsletter, we will be

extending all of the memberships so that
individuals will receive 3 newsletters before
their subscription expires. Also, please note
that the expiration date is marked on you
mailing label as Month Year after your name.

Finally, STUG has purchased an Apple
Macintosh computer to keep track of the
membership database, publish the newsletters,
and do miscellaneous correspondence. It has
proved to be very valuable.

Ongoing projects:

We are still planning on a Standards release
for the primitives. In early 1986 we will be
sending out the final ballot to the standards
committee for review and vote. Once we
receive the votes, a Standards will be
published.

Just In Case You Missed An Issue:

I have heard that a few members did not
receive newsletter #13. If this is also the case
with you, just let us know and we will send
you an issue. Also, does anyone have a copy
of Issue No. 1?7 We do not have a copy in the
office. If you have this issue, could you send
us a copy. Thanks.

Issues

Vol. 1, No. 1
Vol. 1, No.2 Nov.79
Vol. 2, No.1 Apr. 80

No. 4 Oct. 80 No29:o-Novt 182
No.5 Apr. 81 No. 10 May 83
No. 6 Aug. 81 NouI'l 1:BDee. 83
No. 7 Nov. 81 No. 12 May &4
No. 8 May 8§82 No. 13 Nov. 84

January, 1986

What's New

Hewlett-Packard Donation

In February of this year, Les Copari from
Hewlett Packard had a conversation with us
regarding what he might be able to do to help
STUG. We discussd with him the possibilities
of doing a column for the newsletter, as well as
what STUG's future hopes and plans were: to
standardize on the primitives, re-do the BASIC
tape, have a local computer system for people
to call in (Rats Nest), have a local computer
system for us to be able to duplicate our tapes
ourselves, etc...

Well, Les did agree to do a column about
shell scripts (one of the most valuable
capabilities of the Software Tools
environment), but he did more than that. He
looked into the possibility of having his
company donate us a computer. He discovered
that there was an organization in his company
doing this sort of thing, he wrote a proposal for
us and submitted it, and within a few weeks we
received a phone call notifying us that they
accepted his proposal.

We hope to find a location to house the
computer system (an HP3000) and take
delivery of the system later this year. Qur
plans at this time are to use the system for tape
duplication.

We'd like to take the time to thank Les for his
interest and motivation toward helping STUG
with its needs.

Carousel Microtools

Carousel Microtools is a company which has
developed the Software Tools for CP/M and
MS-DOS systems. Unfortunately, they have
recently closed their doors, but they are selling
source code licenses to other businesses.

We have purchased their tools, and are
offering both distributions. Each distribution
includes the binary code (only, no source) for
the primitives, and the source code for the
public domain tools. Both distributions are
avilable now for the same price as our other
distributions. Carousel also have a very nice

Software Tools Communications

manual which we will sell separately.

If you wish to utilize ratfor , or if you wish to
re-compile the public domain tools you will
need the Microsoft FORTRAN compiler for
CP/M, and the IBM FORTRAN compiler for
MS-DOS. «

Ratfor to C Translator

Many of you are interested in the Software
Tools in C. There have been two articles in
previous Communications (ref: Nov. 82 #9,
Nov. 84 #13) which discuss the goals of
translating or re-writing the tools in C . Now
there is a tool which will help get everyone
started with the translation process.

We feel that there are many members of our
group interested in the tools in C, so we have
agreeded to allow Clyde Lightfoot to distribute
information about his software to the group.
We hope this will be of value to. Clyde has
also submitted an article discussing his
software, which is published in this issue.

Software Tools Catalogue

There is a new version of the Software Tools
Catalogue published by and available from
Intelligent Decisions, Inc. This catalogue
describes the work which has been done with
the Software Tools on various systems, as
well as new tools which are available for
many systems.

Many of our members are contributors to the
Catalogue. If you have done work with the
tools or implemented new tools for the system
you use you may be interested in contributing
the information about what you have done for
the next edition of the Catalogue. If you are
looking for an implementaion of the tools on a
particular system, or if you are looking for
tools to do a certain task, the Catalogue might
help you locate someone who can help you.

Intelligent Decisions, Inc.
P.O. Box 50174

Palo Alto, Ca. 94303
price: $8.95

January, 1986

Using the Tools

Letter from Ken Yap
Graduate Student

Dept. of Computer Science
University of Rochester
Rochester, NY 14627

I would like to take this opportunity to
introduce myself. I am currently a graduate
student at the U. of Rochester. I first heard of
Software Tools back in 1976, while working
on a vacation job as a programmer. Of course
the source in those days came from the K&P
book. The software wizard of the company I
worked for had ordered the source from
Addison Wesley in the form of cards.

I followed the development of the tools effort
for several years and implemented the
preprocessor on several machines, including
PDP-11, Univac and CDC Cyber. Most of
this work was done on the side for fun as an
exercise in learning about different operating
systems and issues of program portability.

Only in 1983 did I have a chance to use
Software Tools in a couple of significant
projects. By this time I had the first release of
the Software Tools tape. I would like to relate
my experiences below and share them with
readers of the newsletter.

i BOL BOL converter

I was given the assignment of automating the
conversion of a suite of about 100 COBOL
programs running on a NCR to run on a VAX
under VMS. I hit upon the idea of using sedit
to automate the editing process. One feature
that I added to sedir was to be able to chain to
another script file. Without this feature,
execution times would hae been too long
because a single script would contain too many
patterns. With chained scripts, I was able to
write short scripts for the various sections of a
COBOL program. The resulting scripts
converted about 3 lines of source per second,
but this was acceptable as manual editing
required to complete the conversion tool far
slower. About 90% of the differences were

Software Tools Communications

handled automatically and most of
theremaining 10% involved some programmer
thought anyway.

Telex message switching system in Ratfor

For another project I had to write a telex
message switching system to accept, store and
forward telex bulletins on the WMO weather
information network. The host machine was
to be a Perkin-Elmer 3200. For those who are
not familiar with this machine, the programmer
tools are to say the least, spartan. It does have
a highly optimized Fortran compiler though.

I was not using the STUG preprocessor but
a K&P derivative that I had hacked to generate
Fortran-77 code. The final system comprised
about 2000 lines of Ratfor source, not
including the preprocessor itself. Using
Ratfor to write the system resulted in a body of
code that was easy to understand and modify.
As an example of the ease of modification,
generating another instance of a listener task
merely involving copying a file, changing one
defined symbol, and compiling. Using the
include facility made it easy to share common
routines and ensure that all programs using a
routine had the correct version. In fact, I
never had to learn how to struggle with the
object librarian.

Tape Info

This column is intended for problems,
questions or hints & kinks about any of the
tapes which we distribute. Hopefully this
column will be a way in which we
communicate and possibly help eachother out
with our problems. Here are a few
submissions for this month:

RSX-11M Systems
The tools won't work properly if RMS is in
[SYSLIB].

VAX/VMS V4 x Systems

VMS tools which run under VMS V4.x
should be released at the Fall DECUS
symposium via the new Languages and Tools
SIG Tape. This tape will also be avialble
through STUG.

January, 1986

Scripts Corner

Les Kopari
Hewlett-Packard Cupertino, CA

In any endeavor, it is good to set one's goals
clearly and communicate them to those who
may need help in meeting them. This is what
this column is about. First, we'll discuss the
goal. Then we'll give an example of meeting
the goal. Lastly, we'll ask for your
participation.

This column is a scripts corner. This is the
place to send a Software Tools shell script that
you have worked out, to share with others.
This would make it available for review and
adoption by others in the Software Tools
community. Our goal, then, is to provide the
vehicle for this communication.

But why should this be necessary, you may

run listdirS.pub.sys

ask? Scripts are pretty trivial, obvious, simple
things, aren't they? = Well, that's the catch:
what may seem simple to one person may be
quite insightful to another. It may represent an
entirely new way of thinking of a commonly
known tool. In this case there is much to be
gained by one's contribution. And this case
may occur often enough in a broad spectrum
of viewpoints.

So let's start the column off right by
including a shell script for your consideration.
This one is written for the revised shell, rsh,
of the Software Tools for the HP3000,
implemented by Ken Poulton of Terminal
Software in Palo Alto, California.

First, a little packground. There is a utility
program which produces a listing for each file
requested. The listing contains pieces of
information such as filename, creator, and date
last modified. It looks like this:

LISTDIRS G.00.00 (C) HEWLETT-PACKARD CO., 1983

TYPE HELP' FOR AID

>listf @a;pass

e o e ok o ok ok ook ok ke ok s ok ok ok ok ko ok

FILE: LISTA.TEST.AMDRD

FCODE:0 FOPTIONS: STD, ASCII, VARIABLE

BLK FACTOR: 1 CREATOR: MGR
REC SIZE: 1276 (B) LOCKWORD:

BLK SIZE: 640 (W) SECURITY--READ: ANY

WRITE: ANY
APPEND: ANY
LOCK: ANY
EXECUTE: ANY

EXT SIZE: 5 (S)
REC: 35
SEC: 10
#EXT: 2

MAX REC: 1

**SECURITY IS ON

MAXEXT: 2 COLD LOAD ID: %21364
LABELS: 0 CREATED: WED, 13 FEB 1985
MAXLABELS: 0 MODIFIED: WED, 13 FEB 1985
DISC DEV #: 1 ACCESSED: WED, 13 FEB 1985
DISC TYPE: 3 LABEL ADR: %156445
DISC SUBTYPE: 0 SEC OFFSET: %5

CLASS: DISC FLAGS: NO ACCESSORS

FCB VECTOR: %0 %0

e e e o e o ok e ok ok s ok ok ok ok okok ok

(etc... for each file)

Software Tools Communications

January, 1986

If you have a lot of files in your disc area,
then you have a very cumbersome printout.
Now lets say you need to manage the disc
space. You only need to know the creator,
date last accessed and the name of the file.
Rather than search the bulky listing with the
yellow pen, why not write a shell script to
retrieve the data on one line per filename?
That's what this one does:

ri
creators --- filename, creator and access date listing
printf "listf @$1;pass” | listdir5S.pub.sys >t1:temp
sedit -n -e '/FILE: /p' tl:temp >t2:temp
sedit -n -e /CREATOR: /p' tl:temp >t3:temp
sedit -n -e YACCESSED: /p' tl:temp >t5:temp

filed 22-58 '$1' t3:temp >t4:temp
field 22-58 '$1' t5:temp >t6:temp

lam t3:temp t4:temp t6:temp

output:

Scripts Corner
(continued)

FILE: LISA.TEST.AMDRD CREATOR: MGR ACCESSED: WED, 13 FEB 1985

FILE: OCLDIFA.TEST.AMDRD CREATOR: MGR ACCESSED: WED, 13 MAR 1985
FILE: OCLTA.TEST.AMDRD CREATOR: MGR ACCESSED: FRI, 15 MAR 1985
FILE: OCLTDIFA.TEST.AMDRD CREATOR: MGR ACCESSED: WED, 13 MAR 1985
FILE: OCLTRANA.TEST.AMDRD CREATOR: MGR ACCESSED: FRI, 15 MAR 1985
FILE: REFMANLA.TEST.AMDRD CREATOR: MGR ACCESSED: WED, 13 FEB 1985
FILE: SENDA.TEST.AMDRD CREATOR: MGR ACCESSED: TUE, 12 MAR 1985
FILE: SYNOPSIA.TEST.AMDRD CREATOR: MGR ACCESSED: TUE, 5 FEB 1985

The script places the appropriate command
into the input stream for the program, which
produces the normal output. This output is
then stripped of all but the required lines by the
next 3 commands. The garbage is stripped
from each line by the field tool, leaving only
the interesting data to laminated together on one
line by lam. The results are as listed beneath
the commands.

If this seems a trivial, round-about method of
getting what you want, you may have a
verygood point. Keep in mind, though, that
this was put together in a matter of an hour or
so. This included learning the tool functions
that were available and their proper usage and
syntax. How long would it have taken to write
a program in our favorite languauge to perform
the same function? Admittedly, the execution
time is not the greatest, but then who's time is
more valuable, your's or the machines?

Software Tools Communications

Ideally, the machine is your tool. A script
can help put the burden back on the beast and
free for the creative challenges.

So, we have our first useful script, humble as
it may be. Here's a challenge for you. Can
you take this tools and extend it to delete those
files with an access date greator than a
particular value passed by a parameter?

I am interested in seeing your scripts put to
paper. Write them down, regardless of which
machine they are for or how sketchy they may
be. Send them to me and I will put them in a
future Scripts Corner for our readers
enjouyment. Don't worry about the
readability; I'll supply the witty words, you
supply the techniques and together we'll make
a contribution to the tools community.

January, 1986

Software Tools in Pascal
on Micros

Willett Kempton
Princeton University

The source from the book "Software Tools
In Pascal” by Kernighan and Plauger has been
implemented under Turbo Pascal. The original
implementation was done by Bill McGee on an
Apple][with a CP/M-80 card. From his
implementation, I adapted the primitives to run
under CP/M-86 and MS-DOS, added pipes,
sequential processes and (very limited)
spawning of daughter processes. I also added
a configuration section which makes it very
easy to set up the system for any of the three
operating systems under various hardware
configurations (e.g. piping is done to a RAM
disk if available, the default floppy if not).

Turbo Pascal produces efficient object code.
The tools run noticably faster than they did
under UCSD Pascal. The entire runtime
system occupies 130 Kbytes on disk, compiled
from 4500 lines of source. It has been tested
under Turbo versions 1.0 and 2.0, on all
operating systems, and has been run on a
variety of hardware.

I have uploaded the source to CompuServe
and to a couple of public-domain bulletin board
systems. It has proved a popular upload; the
CompuServe version alone has seen 250
downloads in just two months.

Time constraints prohibit me from answering
individual inquiries or sending disks, so I
suggest that interested tool users download
from CompuServe (GO BAR at any ! prompt,
then enter Borland SIG), or if a VT100, DEC
Rainbow, or VT100 emulator is available,
from Rainbow_Data: 213-204-2996). The file
name is TPTOOL (Turbo Pascal Tools) or
TPTOOL19.LBR. @& May 85

Software Tools Communications

Translating Ratfor to C

Clyde Lightfoot

The following three articles were submitted by
Clyde Lightfoot. The first is about his
product, the rzc translator. The translator is in
the final stages of development and testing and
is scheduled for release by the end of 1985. If
you have any questions or comments regarding
the following materials, please contact:

Clyde Lightfoot

1683 Milroy Place
San Jose, CA 95124
(408) 448-3016

RTC - A Ratfor to C Translator
L_Why Translate Ratfor to C ?

When Ratfor was first developed as a
preprocessor to FORTRAN, the C language,
after which it was patterned, was not widely
accepted and was available mainly on PDP's,
FORTRAN, on the other hand was available
on most machines and a relative standard
subset could be found. Rarfor corrected many
of FORTRAN's inadequacies, but added
another layer to the compile and link process
and put further distance between the
programmer and the final product. In addition,
FORTRAN was developed to crunch numbers,
whereas Ratfor programs typically involved
large amounts of character manipulation that
were not well suited to FORTRAN. To correct
this inherent inefficiency, assembly language
additions to the Ratfor library became
necessary, but in turn reduced portability.

In the ensuing 10 years, the C language has
become widely accepted and is available on
nearly every machine from micro to
mainframe. Despite the fact that there is not yet
an ANSI standard for C , it is considered by
many to be more standard than FORTRAN
across different machines and operating
systems. It is often one of the first high level
languages to be installed on a new machine or
operating system. In contrast, FORTRAN is
often one of the last languages to be offered,
especially on micros. Market demand or the
complexities in bringing up the compilers on a

January, 1986

new system may dictate this, but the result is
that any programs dependent on FORTRAN
will not be available for some time on a new
system.

C is inherently very powerful. Programs are
usually smaller both at the source code and
binary levels and more efficent than Ratfor ,
because the programmer is one step closer to
the machine. Once in C , programs can be
optimized and future improvements can take
advantage of C 's advanced constructs. With
this in mind, and in view of the fact that Ratfor
is modeled after C , it seems only natural to
translate Ratfor based code to C .

Additionally, the Software Tools represent
many man-years of effort with much useful
code and algorithms. Many have studied the
tools both for their own education and to
enable them to duplicate the tools in other
languages and on various systems. By
offering such programs in C', more people will
turn to them for instruction, and there will be a
far greater reason to maintain and upgrade the
tools. Translating these tools to C preserves
the investment in time used to write and learne
these programs.

A few of the tools have been hand translated
into C , e.g., format , macro , and ar , but this
is a very time consuming process that can lead
to the introduction of errors. Some have
concluded that it is easier to rewrite the tools
from scratch rather than try to translate them
from Ratfor . The problem is not due to
differences between the Ratfor and C , but the
inherent properties of the FORTRAN
underlying the Ratfor . By machine translating
Ratfor to C, it should be feasible for a small
organization or individual to undertake the
translation of some or all of the tools, without a
great investment in time and money.

II._A Description of the rrc_Translator

The Ratfor preprocessor logic was closely
followed in the development of the Ratfor to C
translator, in order to understand the full
implications of the Ratfor statements. This
was especially true in the somewhat grey area
of line continuation. In other areas, the error
checking was increased based on what was
expected in a Ratfor statement. This was done

Software Tools Communications

because the philosophy of letting the
FORTRAN compiler catch the error did not
always apply where the C compiler was the
target environment.

There is an emphasis on developing an
interactive translating machine that detects
errors or translation differences during the
translation process and gives the user a chance
to correct them immediately, in contrast to
generating a list of errors or hand changes that
are later required. Although most of the
translation is expected to be done with the
assistance of the machine, there is some Ratfor
and FORTRAN code which is not supported
and is simply passed through. There is also a
means for the user to designate that a line of
code be passed though the translator when it is
encountered as an error, rather than forcing the
user to fix it there on the spot.

There are three steps involved in this
implementation of a Ratfor to C rranslator.
The first is a preprocessing step that performs a
limited degree of translation by the use of
translation macros and selected translation of
certain Ratfor items, such as escaped
characters and operators. Although limited, a
large degree of customization can be performed
in the preprocessing step, such as renaming
function calls to C equivalents and inserting
prefixes specifying certain arguments to be
passed by value instead of by address, the
FORTRAN default. Additionally, -certain
macro replacements necessary for a proper
translation, particularly those macros
containing non-macro alphas that thus must
represent variables or functions, are made here.
The preprocessor automatically processes all
include files to the same degree and builds a list
of the include files followed by the host file
being translated for use by the translator. The
include files are not included in the host file
though, but retain their identity to maintain the
flexibility of the original source. Additionally,
comments and spacing in the original source
are preserved as well.

The next step is referred to as passl . It
performs the identification of all the variables,
arrays, functions, and subroutines. This
includes determining the dimensioning and
initialization information for the variables and
arrays. Although Ratfor code is supposed to

January, 1986

F o

declare all variables and functions, because the
underlying FORTRAN does not require this,
certain variables and functions do slip through
from time to time. This step will catch the
undeclared items and promote character
functions to integer and real functions to
double. In order to properly indentify all
functions and variables, passI also keeps track
of all macros that were not replaced in the
preprocessing phase in order to distinguish
them from 'real’' code. The included files are
processed first in the order they are
encountered in the host files, and their
declarations and macro definitions saved
according to the file in which they were
declared, so they can be activated whenever the
include file is 'included'.

Additionally, passl performs a large degree of
error checking to inform the user of problems
before much processing time has elapsed. (If
an error is detected, the user may correct it and
then passl will start over with the routine
where the error was detected, rather than the
entire file.) Upon detecting an error, pass]
will enter a simple full screen editor that allows
the user to make the correction (but only in the
function or subroutine where the error
occurred), or abort the translation. If a change
is made and the program is instructed to
continue the translation, pass! will then
re-analyze the current routine and if no further
errors are detected it will then initiate the
second pass for the current routine.

The final step is called pass2 . This is where
all the translation of the Ratfor to C will take
place. It inserts declarations based on the
variable identification of pass! , then deletes all
of the FORTRAN (and Ratfor) declarations
and initializations. Translations are made at the
control statement level as well as at the
individual item level. The translated file is
output from pass2 as it is translated. Errors
detected in pass2 cannot be corrected and
unfortunately result in immediate termination
of the translator.

In effect there is one more step in the
translation process that involves the definition
of C compile time macros. There are some
elements of Ratfor or FORTRAN that the

Software Tools Communications

author liked and presumed would be helpful
toother users. Rather than translate them to
their true C counterparts, they are modified as
necessary and left in the code being translated.
In all cases, these items are expressed as
macros that must be replaced with the correct
translation when the translated code is
compiled in C . There aren't many cases of
them, but the following are two examples. The
repeat-until statement is left in tact and is
defined as a do-while by C macros. The
keyword FUNCTION is used in the
declaration of a function (or subroutine) in
order to make it easier for the user to see where
new functions begin in C. This must be
replaced with nothing at C compile time since
it has no meaning in C .

ITI. Use of the rtc Translator

In general, it is always best to translate running
Ratfor code. Make sure the program is
running properly in its Ratfor form before
trying to run it through the translator.
Although the translator implements many error
checks, confusion might arise if undebugged
code is sent though. After the code has gone
through the translator, hand fixes will be
required for any literals that were passed
through as well as for any unsupported
statements. These include the read , write ,
and format statements, equivalence , internal

functions , and any complex numbers , along
with any non-standard FORTRAN-IV
statements. After the translated code is
compiled in C, a lint utility should be used to
check for any other errors that slipped though
the translation process. If the user then wants
to optimize the new code, it would make sense
to first run it through a profiler to determine
where the optimization would be most
beneficial.

To improve the translation results, the user
should also review the preprocessor's
translation macros and either add to or change
certain definitions to accomodate different
Ratfor or C environments. (Most of the
Software Tools macros describing the
operating system environement should be left
intact through the translation process.)

January, 1986

IV, Summary

The Ratfor to C translator is a unique new
product which will be especially useful for
those in the software development field. It will
provide greater flexibility in the use of current
Ratfor code and will offer very appreciable
time savings in the translation process. In
particular, it will greatly benefit those seeking
to translate the Software Tools for commercial,
educational and personal use.

Expressing Ratfor in C
Intr ion

The philosophy chosen for the translation of
Ratfor into C is a strict, literal translation with
minimal optimization done during the
translation process. This is better suited to
automation and requires minimal human
intervention. Any optimization that is desired
can be done to the translated code in C and
applied to areas that will be most beneficial.
By taking this approach, it is more likely that
some version of the translated code will be up
and running sooner. It should also be pointed
out that the translation process does not change
the code's functionality. For example, if the
Ratfor preprocessor is translated into C , it
will still process Ratfor into FORTRAN, not
Cd

The translations performed on the Ratfor and
FORTRAN statements by the rtc translator are
presented below. The Ratfor statements are
obvious to most, and are the easiest to
translate. On the other hand, the FORTRAN
statements provide certain challenges for the
translator and serve to reinforce the need for
machine assistance in the translation process
due to their subtleties.
IL._Translation of the Ratfor Statemen

The Ratfor statements basically mimic their C
counterparts with a few exceptions, with the
most basic difference being the method of
continuing lines. A line in C is automatically
continued across lines until being terminated by
a semicolon, whereas Ratfor uses implied
continuation. Generally speaking, if a Ratfor

Software Tools Communications

' parentheses

-10-

statement ends in a comma, open parentheses,
or operator, it is assumed to be continued
across to the next line. However, in certain
Ratfor statements, logic that is used to balance
transcends end of lines.
Additionally, a semicolon can be used to mark
the end of statements and an underscore
immediately followed by a newline indicates a
line continuation. This same logic must be
used in the translation process in order to
determine the end of a statement and when to
place the semicolon required for C . Given that
the Ratfor continuation logic is followed, the
translation of Ratfor control statements is
presented in TABLE 1.

Most of the Ratfor statements do not present
special problems, but some deserve special
mention. The repeat-until statment is readily
translated into a C do-while, but unlike
Ratfor , the while s not optional in C and
must be added with a true expression to
duplicate the forever function of the repeat
statement. The Ratfor (and FORTRAN) do
statements lend themselves to translation to the
for statement, but this is not a literal translation
since the Ratfor FORTRAN-IV do statement
will always execute once even if the test fails
on the first loop. The for loop tests at the top
and will not execute if the test fails. Although
a true literal translation of the do-loop can
probably be devised with a combination of if,
goto, and increment statements, this property
of the do-loop often causes problems and
must be programmed around with an additional
external if test, hence I have opted for the for
statement as the do-loop translation. The
Ratfor switch statement translates in the C
form with the addition of break statements and
the splitting up of the Ratfor case constants
into multiple case statements as shown in the
table. The normal Ratfor break statement is
identical in function to its C counterpart,
however the optional number following the
break statement is not supported and must be
hand translated. (The break n form is not
used very often and should not pose a
problem.) Similarly, the Ratfor next statement
is identical to the C continue statement.
Finally, any Ratfor literal statement or
fragment is simply passed through the
translator untouched, since it presumably
contains non-standard FORTRAN-IV code.

January, 1986

TABLE 1

Ratfor Control Structures

Ratfor (&5

if(condition) if(condition)

statement(s) statement(s);
else else

statement(s) statement(s);
while(condition) while(condition)

statement(s) statement(s);
for(init; condition; incr) for(init; condition; incr)

statement(s) statement(s);
repeat do

statement(s) statement(s);
until(condition) while(!(condition));
do a=b, ¢, d for(a=b; a<c; a=c+d)

statement(s) statement(s);
switch(expression) switch(expression)

{ {

case constl, const2:

statement(s)

case consta, constb:

statement(s)
default:
statement(s)
}
break
break n
next
{}
(]

% literal_ statement

fragmentl %(fragment2 %)

fragment3

string name "text"
string name(n) "text"

Software Tools Communications

=11 -

case constl:

case const2:
statement(s);
break;

case consta:

case constb:

BEG_LITERAL fragment2 END_LITERAL

statement(s);
break;
default:
statement(s);
break;
}
break;
(not supported, repl w/ goto label
continue;
{3
0B
LITERAL literal_statement
fragmentl
fragment3
char name[] = "text";
char name[n] = "text";

January, 1986

The macros literal, beg literal, and
end_literal replace the % and
percent-parenthesis combinations in the
translated code. These strings may be simply
defined as nulls at C compile time if the code
is ok for C, or left undefined for the C
compiler to identify as undefined variables.
The literal features also provide a convenient
means of delaying the correction of errors
found during the translation until later.

TABLE 2 gives the translation of the
FORTRAN-1V and Ratfor types into C , and
there are three things to mention here. First,
even though there isn't a logical type in C,
integers should serve this function well.
However, in case the logical variable is being
used to reserve some space, the logical
variables are translated into macros or typedef
names that preserve the original size
information about the logical. Then at C
compile time, these macros can be defined to
be the equivalently sized integer or they can be
defined as short s, thus preserving space.
Secondly, the Ratfor double integer macros
are replaced with equivalent long expressions.
Finally, complex numbers are not supported.
Even though it is easy enough to define a
structure to hold a complex number, all of the
operations involving complex numbers must be
replaced with function calls, which would add
an inordinate amount of complexity to this
product for a minimal return.

The Ratfor operators are the same as C with
the exception that = and ~= are also accepted
for !=, and | and & must be changed to || and
& & respectively. Additionally, the FORTRAN
exponential operator must be translated into a
call to the C pow function. The FORTRAN
logical and relational operators are also
translated to their C counterparts.

Translation of the Ratfor character escape
sequences is given in TABLE 3. In most
cases, all that is involved is simply changing
the at-sign into a backslash. Note, that the
double at-sign reduces to one, and the
backslash become a double backslash .

TABLE 4 gives the translations performed for
the Ratfor preprocessing commands. There
are several items worthy of note here. The
case of a macro definition with arguments

Software Tools Communications

=19

TABLE 2
Type Translations

FORTRAN-IV C
LOGICAL LOGIC -> macro for 'short'

LOGICAL*1 LOGIC -> macro for 'short’
LOGICAL*2 LOGIC? -> macro for 'int’
or 'short’
LOGICAL*4 LOGIC4 -> macro for long’
or 'short’
INTEGER int
INTEGER*1 short
INTEGER*2 int
INTEGER*4 long
REAL float
REAL*4 float
REAL*8 double
DOUBLE PRECISION double
COMPLEX (not supported)
COMPLEX*16 (not supported)
R4,
CHARACTER char
(double integer macros) long
TABLE 3

Character Escape Sequences

Ratfor (&
‘@n' \n'
‘@t \t'
‘@@ '@
'‘@r' \r'
‘@b’ \b'
'‘@e' NO'
‘@f \f
'‘@I' \n'
‘@ddd \ddd' (octal digits)
' Rik
1 @ " l\n

Note: all other Ratfor character literals would be the
same as C .

January, 1986

TABLE 4
Preprocessing Commands

C
#include "filename"
#include" filename”

Ratfor
include filename
include "filename"

define(name,repl_str) #define name repl_str

(w/o arguments)

define #define name(z_1,...,z 9)
(name,repl_str_w/args) repl_str_ w/z_1,etc)

undefine(name) #undef name

ifdef(name) #ifdef name

elsedef f#else

enddef #endif

ifnotdef(name) #ifndef name

arith(x,0p,y) (x)op(y)

incr(x) (not supported)

ifelse(a,b,c,d) o

substr(s,m,n) .

lentok(str) -

requires that argument names be created and
used in place of the dollar sign number
combinations in the replacement text and be
added to the macro name in an argument list. It
was decided to merely replace the $ with the
string z_ in order to create the macro argument
name. There are no checks to ensure that the
created names do not already exist in the
replacement text, since it was felt that the
number of times a z_1 or z_2 would show up
as an individual item in the replacement text
was minimal at best. (If you suspect these
combinations may show up in some macros, it
is best to change them before the translation
begins.) Additionally, any macro which is
replaced with an alpha(that in turn is not a
macro), will be replaced during the
preprocessing phase of the translation in order
to make intelligent translations in pass/ and
pass2 . The last five Ratfor preprocessing
commands have no equivalent in C. However,
since C evaluates constant expressions at
compile time, the arith command can simply
be replaced with the equivalent arithmetic
expression during the translation process. The
other commands, incr, ifelse, substr, and
lentok, are currently not supported, (but I am

Software Tools Communications

s

considering replacing them in the
preprocessing phase of the translation with
their currently defined conditions). Finally, the
Ratfor conditional preprocessing commands.
(e.g., ifdef, enddef, etc.) will normally be
removed during the preprocessing phase of the
translation along with their corresponding code
according to the current definition of macros
present in the code. This is necessary in order
to do proper error checking of parentheses and
braces in passl and pass2 . It is intended to
include an option to deactivate error checking
and the conditional preprocessing not be
evaluated in order that these preprocessing
commands and corresponding code be passed
though the preprocessor and translated by
passl and pass2 , (however, unpredictible
results can be expected).

i h r ri
FORTRAN-IV

The differences in the characteristics of the
FORTRAN-IV underlying the Ratfor and C
require many subtle translations and can prove
to be very challenging. They include such
things as static versus automatic variables,
passing arguments by address rather than by
value, the order and range of array indices,
implicit typing versus total declaration in C ,
commons versus externs, equivalence versus
pointers or unions, real precision arithmetic
versus double precision arithmetic in C, case
dependence in C, etc., etc. Most of the these
can be compensated for to one degree or
another. Some things like C’s use of only
double precision arithmetic in expressions
cannot be changed without some
reprogramming of expressions to reduce their
accuracy. Luckily, the increased accuracy
offered by C is usually not a problem, and in
fact is often desired.

Often there is a similar, but not exact
representation in C' of a FORTRAN statement,
such as the case of FORTRAN's common and
C 's extern declaration. In most cases, the
extern is sufficent to represent the features of
the common statement, mainly the transfer of
information between routines other than by
arguments. However, when a common
variable is given different names in different
invocations of the common statement among

January, 1986

routines, the extern analogy breaks down.
Similarly, when a local array is equivalenced
toa location of a scalar in a common and the
programmer is counting on accessing other
elements in the common, the analogy also
breaks down. It is possible to come up with an
exact translation of the common statement
through the use of pointers and assigning those
pointers to different offsets in a block of
memory equal in size to the original common,
but this is a fairly complex operation and it was
decided that the extern analogy would be better
instead, (especially since the Ratfor code I
examined involved a clean use of commons
suitable to the extern analogy).

The case of equivalences is different however.
The obvious C analogy is a union statement,
however it turns out to be a subset of the
equivalence. A better analogy is a pointer to
one or more of the equivalenced variables.
Unfortunately, the logic required to generically
duplicate the expected equivalence uses is very
complex, (you basically have to duplicate what
the FORTRAN compiler must do), and since
the equivalence is not used that often in the
Ratfor code I have seen, it was decided to not
support the equivalence statement at this time.

Fortunately, most of the other differences have
rather straight forward solutions. For
example, all local variables except arguments
are declared as statics. Any implicitly typed
variables are declared according to the typing
rules in effect at the time of the translation, and
all variable names are converted to lowercase.

Translations for the FORTRAN-IV statements
normally used in Ratfor programs are shown
in TABLE 5. Any FORTRAN statments not
recognized by the translator will be considered
'other’ and treated with logic similar to the
Ratfor preprocessor's 'otherc'/'eatup’
combination.

IV, Summa

The Ratfor to C translations presented here
cover most of the translations performed by the
rtc translator, excepting some details omitted
for brevity. They are suitable for use when
translating by either hand or machine, but lend
themselves to machine translations for which
they were developed. Following them

Software Tools Communications

rigorously should result in a fairly good
translation, but could prove to be very tedious
work if you are translating by hand. Of

_ course you can always break up the boredom

e P

by throwing in some custom optimizations -
replacing linepointer s with true pointers
perhaps! @&

January, 1986

TABLE 5
FORTRAN-IV Statements

FORTRAN-IV C
type function name(arg_list) c_type FUNCTION name(arg_list)
arg_list declarations;
{
local declarations;
subroutine name(arg_list) VOID FUNCTION name(arg_list)
: arg_list declarations;
{
local declarations;
common/label/var_list extern /*label*/ ctype var_list,
/label2/var_list /*1abel2*/var_list;

Note: plus the externs must be
declared outside of a routine once.

call subr(arg_list) subr(arg_list);

(note: '()' are mandatory)
do n a=b,c,d for(a=b; a<c; a=c+d){
statement(s) statement(s);

n statement In: statement;

}
goto n goto In;
n statement In:

statement;

('n" is a number and 'l' is the letter 'L")

continue H
stop exit();
end }

read (not supported)
write =
format

equivalence

"

"

Note: all FORTRAN-IV type, dimension, & data statements are read for their typing
information, but are deleted and replaced with the C equivalents in the function or
subroutine declaration, which combine type, dimension, & data statement information.

Software Tools Communications -15 - January, 1986

Proposed Changes to the Software
Tools library in C

There are close to 100 tools in the Software
Tools system. To attempt to optimize all of
them in C would be a big job. However all of
the tools will be enhanced by optimizing the
library and primatives in C .

This optimization should take the form of
improving the internals of library routines
while maintaining the same calling convention
of the routines. Areas that will benefit most
will be those involving strings where pointers
can be used instead of arrays and indexes.
Additionally, the area of of memory allocation
should be made both more efficient and flexible
with C 's capabilities.

If it is desired to change the calling convention,
then a new function name should be created
and used in future improvements to the tools
themselves. In many cases, this may simply
mean using a standard C library function
rather than inventing another.

There is one change to the calling convention
that the rc ranslator will support, namely pass
by value. A prefix can be added to an
argument, (via the use of a translation macro),
that will inform the translator to pass the value
of the argument rather than its address, as is
the regular FORTRAN convention. If this is
done via a translation macro and that macro is
used in the translation of all of your Razfor
code - both tools and library - then a consistent
translation will be performed. However, in
order for this not to change the logic of the
code, it can be applied only to those library
functions that do not change the value of the
argument. Routines that do and don't meet this
criterion are stated in the library manual.

A committee or forum should be established to
identify which library routines should be
optimized first, along with specifing new
routines in C. This isn't a very difficult job,
however the persons involved in the effort
should have a good working knowledge of
how the tools are written.

Software Tools Communications

=116 -

January, 1986

INTELLIGENT DECISIONS, INC.

PO Box 50174
Palo Allo, California 94303
408/996-2399 Telex 658340 Intertel SNC Cable Contel

OTHER PRODUCTS FROM ORDER FORM
INTELLIGENT DECISIONS — EMACS Machine Type 08

CTuNIX [Binary $:395 {77 Source $995
Software Tools Catalogue I 1vMms [Binary $2,500 1 I Source $7.000
Produced in cooperation with the Software Tools Users LIMs/DOS [Binary $325 [T Source: 3995
Group, this catalogue is a treasure chest of information —_ MINIMACS Machine Type — 08 _
about translators, Ratfor, macro preprocessors, new tools, LI VAX U Binary (WA) L Source $795
shells, text formatters, translations and more. The tools CIMC68000 1] Binary $395 (1 Source $795
run on over 35 different machines. The catalogue includes —— SOFTWARE TOOLS CATALOGUE(S) ~ $K.95 cach
a list of people to contact regarding implementations on — UUCP NETWORK DIRECTORY(IES) $8.95 each
specific machines, putting you in touch with people on the —— 4 ISSUES UUCP NETWORK DIRECTORY $29.95/vr
“front lines” and enabling you to avoid duplication of effort. Subtotal

Sales tax (Calil. residents add applicable tax)
Shipping & handling: Domestic $2.00/0verseas $5.00
Total

UUCP Network Directory

This directory lists over 1,200 people who are reachable
via this rapidly growing international network of over 3,500
machines and over 25,000 people. Each entry lists the per-

$
$
$
$
$

$

Payment may be made by check, money order, VISA or MasterCard.

son's name and network address and in many cases their Gredit card # Exp. date
work phone and something about them. PO # (For orders over $250 only)
MINIMACS Signature
_small model Gosling EMACS for UNIX which includes :;;“resq
many of the features of EMACS but does not include the 2 _
built-in MLISP programming language. MINIMACS is avail- Gy il
able on all implementations of UNIX for a wide range of Send orders to: Intelligent Decisions, Inc., PO Box 50174, Palo Alto,
computer systems. CA 943038 0174, USA

Please send me information on other products from
Intelligent Decisions.

software tools users group

140 center street, el segundo, ca 90245

Software Problem Report

Date:
Originator’s Name: Address:
Phone:
Net Address:

Name of Tool(s):

Machine/Operating System:

Date of Distribution Tape:

l-tt!t‘t.llllI.tt‘.“".-‘.“‘-S‘I“‘-l-‘t‘tttttt-tlllll"'t‘.lll.t‘t‘ltt.‘

Problem (Check all that apply) —source ___routines ___manual entry
Description:

SEESERAREED

...Cltt"-."“'t.““‘---l‘-..“‘t-l-‘l...‘!t."tt"llllll.‘tt"..ll.l“‘.

Suggested fix, if any:

e rIrrrrrrrrrrrr e e e AR ST TR L RRE R DR R RS LR RA S REL L AL L AL LA a4l bt L

If you have questions, call the
STUG Hotline: (415) 4864680

Ittt et TR R RIS E R IR RI SRR R R LR DAL AL AL T L R R A R Attt l)

software tools users group

140 center stsest, of segundo, ca 90245

Software Submission Form

Please read the article on Tape Submission included in this newsletter. Your submission should be in archive format
and include manual entries, routines, etc. as described in the article.

Machine and System on which you made the tape:

Brief description of tape contents:"

Density: — 300 bpi —___1600 bp
{9-track only)

Character Code: _____ EBCDIC ___ ASCII

Blocking Factor:

Software Release
LRI EA TR E R LY]

1 (We) the undersigned give the Software Tools Users Group permission to reproduce and distribute all or any part of
the program package material contained on the above tape for the use of STUG members. This material is not subject to

copyright.

Submitted by:

SIGNATURE(s) DATE

software tools users group

140 center street, el segundo, ca 90245

Order Form
General Information
Date:
Name:
Address:
City: State / Zip:
Country:
Phone: Network:
Privacy: Yes, | wish my name, address, phone, etc. to be kept private.

No, I do not request that this information be kept private.

System Information

Machines and systems on which you use the Software Tools:

Utilities/library functions which you have implemented:
The standard package (as distributed by STUG)
The original package (Kernighan and Plauger)
Other:

Other systems on which you plan to implement the Tools:

Special Interests:

** Please Turn Over **

Membership Renewal
Individual Membership $ 20.00 fyr
Corporate Membership $ 200.00 /yr (includes 1 tape)
Sustaining Membership $2000.00 /yr
» Number of years Foreign Delivery $ 5.00/yr Total $
Single Newsletters (#1 Nov. 79 - #13 No. 84) $2.00 each
Tape Orders * Membership is now required
Target computer(s) for the tools:
Tapes Available Specify Density Quantity
Basic Tapes
82 Portable LF Terminated, 2048 cpb ASCII 800 1600
82 Portable Card Image, 3200 cpb ASCII 800 1600
84 Toys Tape (Card Image, LF Term, or VMS format) 800 1600
Specific Implementations
84 VAX/VMS (Backup Format) 800 1600
83 RSX-11M (BRU Format) 800 1600
82 TOPS-20 800 1600
82 Unix 4.1 BSD (Tar Format) 800 1600
83 IBM/CMS 800 1600
83 IBM/MVS 800 1600
83 UNIVAC 1100 800 1600
? SELMPX 800 1600
83 HP1000 RTE-IVB + 6/VM (READR or fc format) 800 1600
84 Carousel Tools for CP/M *
85 Carousel Tools for MS-DOS **
» Number of tapes Foreign Delivery $ 10.00/yr Total $

@ $80.00 each

) Requires Microsoft FORTRAN to use Ratfor, or compile the public domain tools
** Requires IBM FORTRAN to use Ratfor, or compile the public domain tools

11/85

Questionaire

What computer conferences do you attend?

What systems do you use which have the tools?

Whose tools do you use? STUG
Georgia Univ.
Your own

Do you consider yourself a: User

OR Implementor

&OR System Installer

Have you developed any new tools?

What would you be able to help STUG with?

software tools users group

140 center street, el segundo, ca 90245

STUG Asks You

USENIX DECUS UNIFORUM
Others:

VMS RSX RSTS TOPS-10/20
Unix™ IBM/CMS IBM/MVS HP/RTE
MS-DOS CPM Univac SEL MPX
Other:

U. of Arizona Ken Poulton

Prime Users Grp. Carousel

Others:

One who only uses the tools

One who uses and modifies or writes new tools
One who jnstalls the tools

Yes No

Describe:

Language:

What would you like STUG to do or provide you with?

1/86

