
L)/0/4

t ‘-
‘*¢<

'2‘ »

4*

W THE

C

PROGRAMMING

 LANGUAGE

Brian W. Kernighan

Dennis M. Ritchie

Bell Telephone Laboratories, Incorporated
Murray Hill, New Jersey

DRAFT VERSION 1.

Comments on this book are solicited.

@ 1977. All rights reserved.

‘M

- 0 -: PREFACE

C is a general-purpose programming language which features economy of
expression, modern control ow and data structures, and a rich set of operators. C

is not a ‘very high level’ language, nor a ‘big’ one and is not specialized to any par-

ticular area of application. But its absence of restrictions and its generality make it
more convenient and e'ective for many tasks than supposedly more powerful
languages. A

This book aims to teach how to program in C. Most of the treatment is based

on reading, writing and revising examples, rather than on bald statements of rules.
For the most part, the examples are complete, real programs, rather than articial
ones, although they are of necessity not very big. Besides howing how to make
effective use of the language, we have also tried where possible to show useful algo-

rithms and principles of good style and sound design.
The book is not an introductory programming manual; it assumes some fami-

liarity with basic programming concepts like variables, assignment statements, loops,
and subroutines. Nonetheless, an absolutely novice programmer should be able to
read along and pick up the language, although access to a more knowledgeable col-

league will help.
C was originally designed for and implemented on the UNIX operating system

on the DEC PDP-ll; the operating system, the compiler, and essentially all UNIX
applications programs are written in C. Production compilers also exist for the IBM
System/370, the Honeywell 6000, and the Interdata 8-32, with preliminary versions
on several other machines. C is not tied to any particular system and it is readily
possible to write portable C programs.

Since C is an evolving language that exists on a variety of systems, some of
the material in this book may be incorrect for a particular system. We have tried to
steer clear of such problems, and to warn of the inevitable difculties. When in
doubt, however, we have generally chosen to describe the situation on UNIX, since

that is the environment of the majority of C programmers.

1

CHAPTER 1: A TUTORIAL INTRODUCTION

Let us begin with a quick introduction to C. Our aim is to show the
essential elements" of the language in real programs, but without getting bogged
down in details, formal rules, and exceptions. At this point, we are not trying
to be complete or even precise (save that the examples are meant to be

correct). We want to get you as quickly as possible to the point where you can
write useful programs, and to do that we have to concentrate on the basics:
variables and constants, arithmetic, control ow, functions, and the rudiments
of input and output. We are quite intentionally leaving out of this chapter
features of C which are of vital importance for writing bigger programs. These
include pointers, structures, most of C’s rich set of operators, several control
ow statements, and myriad details.

This approach has its drawbacks, of course. Most notable is that the
complete story on any particular language feature is not found in a single place,
and the tutorial, by being brief, may also mislead. We have tried to minimize
this effect, but be warned.

Another drawback is that later chapters will necessarily repeat some of
this chapter. We hope that the repetition will help you more than it annoys.

In any case, experienced programmers should be able to extrapolate
from the material in this chapter to their own programming needs. Beginners
should supplement it by writing small, similar programs of their own. Both
groups can use it as a framework on which to hang the more detailed descrip-
tions that begin in Chapter 2.

1.1 Getting Started
The only way to really learn a new programming language is by writing

programs in it. And the rst program is the same for all languages:

Print upon the normal output the words
hello, world

This is the basic hurdle; to leap over it you have to be able to create the pro-
gram text somewhere, compile it successfully, load it, run it, and nd out
where your output went. With these mechanical details mastered, everything
else is comparatively easy.

1

2 THE C PROGRAMMING LANGUAGE CHAPTER l

In C, the program to print “hello, world” is

malnl)

l
prlntf("helIo, world\n");

I

Just how to run this program depends on the system you are using. As
an specic example, on Unix you must create the source program on a le
whose name ends in “.0”, such as heIlo.c, then compile it with the cc com-
mand

cc heIlo.c

If you haven’t botched anything, such as omitting a character or misspelling
something, the compilation will proceed silently, and make an executable le
called a. out. Running that by the command

0. 01!!

will produce

hello, world

as its output.
On other systems, the rules will be different; check with a local expert.

Exercise I-I: Run this program on your system. Experiment with leaving
out parts of the program, to see what error messages you get. E1

Now for some explanations about the program itself. A C program,
whatever its size, consists of one or more “functions” which specify the actual
computing operations that are to be done. C functions are similar to the func-
tions and subroutines of a Fortran program or the procedures of PL/I, Pascal,
etc. main is such a function. Normally you are at liberty to give functions
whatever names you like, but main is a special name — your program begins
executing at the beginning of maln. This means that every program must have
a maln somewhere. mbln will usually invoke other functions to perform its
job, some coming from the same program, and others from libraries of previ-
ously written functions.

One method of communicating data between functions is by arguments.
The parentheses following the function name surround the argument list; here
maln is a function of no arguments, indicated by (). The braces [1 enclose
the statements that make up the function. A function is invoked by naming it,
followed by a parenthesized list of arguments. There is no CALL statement as
there is in Fortran or PL/I. The parentheses must be present even if there are
no arguments.

The line that says

prlntf("hello, world\n");

is a function call, which calls a function named prlntf, with the argument
"hello, worId\n". prlntf is a library function which prints output on the

CHAPTER l A TUTORIAL INTRODUCTION 3

terminal (unless some other destination is specied). In this case it prints the
string of characters that make up its argument.

A sequence of characters enclosed in the double quotes "..." is called a

character string. For the moment our only use of character strings will be as

arguments for printf andother functions. A string may contain any number of
any characters.

The sequence \n in the string is C shorthand for the newline character,
which when printed advances the terminal to the next line. If you leave out
the \n (a worthwhile experiment), you will nd that your output is not ter-
minated properly by a line feed. The only way to get a newline character into
the prlntf» argument is with \n; if you try something like

prlntf("hello, world
");

the C compiler will print unfriendly diagnostics about missing quotes.
prlntf never supplies a newline automatically, so multiple calls may be

used to build up an output line in stages. Our rst program could just as well
have been written

maIn()

{

printf("hello, ");
prlntf("world"):
printf("\n");

to produce an identical output.
Notice that \n represents only a single character. There are several other

“escape sequences” like \n for representing hard-to-get or invisible characters,
such as \t for tab, \b for backspace, \" for the quote, and \\ for the backslash
itself

Exercise I-2: - riment to nd out what happens when prlntf’s argument
‘ stri 1 - - --wt ere X is some character not listed above. El

1.2 Variables and Arithmetic
The next program prints the following table of fahrenheit temperatures

and their centigrade equivalents, using the formula c==(5/9_) (f— 32).

0 -17.8
20 -6.7
40 4.4
60 15.6
80 26.7

100 37.8
120 48.9
140 60.0
160 71.1
180 82.2

4 THE C PROGRAMMING LANGUAGE CHAPTER 1

200 93.3
220 104.4
240 115.6
260 126.7
280 137.8
300 148.9

Here is the program itself.

/- prlnt fahrenheit-centigrade table
tori = 0, 20,300 =-/

maln()

l
Int lower, upper, step;
float fahr, cent;

lower = 0; /~ lower limit of temperature table -/
upper = 300; /# upper limit =-/

step = 20; /~ step size -/

fahr = lower;
while (iahr <-= upper) l

cent - 5.0/9.0 * (fahr—32);
printi("%4.0i %6.1f\n", fahr, cent);
fahr — iahr + step;

I

l

The rst two lines

/~ print fahrenhelt—centigrade table
tori == O, 20, 300 ~/

are a’ comment, which in this case explains briey what the program does. Any
characters between /* and ~/ are ignored; they may beused freely to make a

program easier to understand.
ln C, all variables must be declared before use, usually at the beginning

of the function before any executable statements. If you forget a declaration,
you will get a diagnostic from the compiler. A declaration consists of a type

and a list of variables which have that type, as in

int lower, upper, step;
float fahr, cent;

The type int implies that the variables listed are integers; float stands for oat-
ing point, i.e., numbers which may have a fractional part. The precision of both
int and float depends on the particular machine you are using; on the PDP-11,
for instance, an int is a 16 bit number, that is one which lies between —32768
and +32767. A float number is a 32 bit quantity, which amounts to about
seven signicant digits, with exponents between -38 and +38.

CHAPTER 1 A TUTORIAL INTRODUCTION 5

C provides several other basic data types besides int and float, the most
common of which are

char character — a single byte
long long integer .

double double precision oating point

There are also arrays and structures of these basic types, pointers to them, and
functions that return them, all of which we will meet in due course.

The executable statements in the temperature conversion program begin
with the assignments

lower - 0;
upper =- 300;
step - 20;

etc., which set the variables to their starting values. Individual statements are
terminated by semicolons; no semicolon follows a brace.

To produce a table of many lines, we need a loop; this is the function of
the while statement

whlle (fahr <= upper) {

} .

The condition in parentheses is tested. If it is true, the body of the loop (all of
the statements enclosed in the braces { and I) is executed. Then the condition
is re-tested, and if true, the body is executed again. Eventually when the test
becomes false (fahr > upper) the loop ends, and execution continues at the
statement that follows the loop. There are no further statements in this pro-
gram, so it terminates.

The body of a while can be a single C statement, like

whlle (...)

printt(...);

or one or more statements enclosed in braces, as in the temperature converter.
The statements controlled by the whlle are indented by one tab stop so

you can see at a glance what the scope of the while is, that is, what statements
are inside the loop. The indentation emphasizes the logical structure of the
program. Although C is quite permissive about statement positioning, proper
indentation and use of white space are critical in making programs easy for
people to read. The position of the braces is less important; we have chosen
one of several popular styles. Pick a style that suits you, then use it con-
sistently.

Most of the work gets done in the body of the loop. The centigrade
temperature is computed and assigned to cent by the statement

6 THE C PROGRAMMING LANGUAGE CHAPTER l

- cent -= 5.0/9.0 s (tahr—32);

The reason for using 5.0/9.0 instead of the simpler looking 5/9 is that in C, as

in many other languages, integer division truncates, so any fractional part is dis-
carded. Thus 5/9 is zero and of course so would be all the temperatures. A
decimal point in a constant indicates that it is oating point, so 5.0/9.0 is
0.555... , as we want.

Why not use 32.0 instead of 32? Since fahr is a float, 32 is automati-
cally converted to float (to 32.0) before the subtraction can be done. As a

matter of style, it’s wise to write oating point constants with explicit decimal
points even when they have integral values; it emphasizes their oating point
nature for human readers, and ensures that the compiler will see things your
way too.

This example shows a bit more of how printf works. prlntt is actually a

general-purpose format conversion function, which we’ll describe completely in
Chapter 7. Its rst argument is a string of characters to be printed, with each
% sign indicating where one of the other (second, third, ...) arguments is to be
substituted, and what form it is to be printed in. In particular, %4.0f says that
a oating point number is to be printed in a space at least four characters wide,
with no digits after the decimal point. %6.1f describes another number to
occupy six spaces, with 1 digit after the decimal point. (printt also recognizes
%d for decimal integer, %O for octal, %x for hexadecimal, %C for character, %s
for character string, and %% for % itself.)

Each % construction in the rst argument of printf is paired with its
corresponding second, third, etc., argument; they must line up properly by
number and type, or you’ll get meaningless answers.

By the way, prlntf is not part of the C language; there is no input or out-
put dened in C itself. There is nothing magic about prlntf; it is just a useful
function which is part of the standard library of routines that are normally
accessible to C programs. In order to concentrate on C itself, we won’t talk
much about I/O until Chapter 7. In particular, we will defer formatted input
until then.

Exercise 1-3: Modify the temperature conversion program to print a head-
ing above the table. U
Exercise 1-4: Write the program which does the corresponding centigrade
to fahrenheit table. El

Some Variations
As you might expect, there are plenty of different ways to write a pro-

gram; let’s try a variation on the temperature converter.

CHAPTER l A TUTORIAL INTRODUCTION 7

maIn() /- fahrenheit—centlgrade table -/
{

int fahr;

for (fahr — 0; fahr <== 300; fahr -.fahr + 20)
printf("%4d %6.1f\n", fahr, 5.0/9.0 1- (fahr—32));

I

This producesthe same answers, but it certainly looks different. One major
change is the elimination of most of the variables; only fahr remains, as an lnt.
The lower and upper limits and the step size appear only as constants in the for
statement, itself a new construction, and the expression that used to produce
cent now appears as the third argument of prlntl instead of a separate assign-
ment statement.

Thislast change is an instance of a quite general rule in C — in any con-
text where it is permissible to use the value of a variable of some type, you can
use an expression of that type. Since the third argument of printf has to be a

oating point value, any oating point expression can occur there.
The for itself is a loop, a generalization of the whlle. If you compare it

to the earlier while, its operation should be clear. The rst part

fahr = O

is done once, before the loop proper is entered. The condition

fahr <= 300

is evaluated, and if true, the body of the loop (here a single printf) is exe-
cuted. Then the re-initialization step

fahr - fahr + 20

is done, and the condition re-evaluated. The loop terminates when the condi-
tion becomes false. As with the while, -the body of the loop can be a single
statement, or a group of statements enclosed in braces. The initialization and
re-initialization parts can be any single expression.

The choice between while and for is arbitrary, based on what seems
clearest. The for is usually appropriate for loops when the loop initialization
and re-initialization are single statements and logically related.

Symbolic Constants
A nal observation before we leave temperature conversion forever. It’s

bad practice to bury “magic numbers” like 300 and 20 in a program; they con-
vey no information to someone who might have to read the program later, and
they are hard to change in a systematic way. Fortunately, C provides a way to
avoid such magic numbers. With the #dene construction, you can dene a

symbolic name with a particular value at the beginning of a program, then use
the name whenever the value is needed. The compiler replaces all occurrences
of the name by the value.

8 THE C PROGRAMMING LANGUAGE CHAPTER 1

#dene LOWER 0
#define UPPER 300
#define STEP 20

main() /- fahrenheitlcentigrade table -/
l

int fahr;

for (fahr = LOWER; fahr <'- UPPER; fahr = fahr + STEP)
printf("%4d %6.1f\n", fahr, 5.0/9.0 - (fahr-32));

}

The replacement for the name can actually be any text at all; it is not limited to
numbers. Notice that there is no semicolon at the end of a denition. Since
the whole line after the dened name is substituted, there would be too many
semicolons in the for. A

Exercise I-5: Verify that the construction

#define LOWER 0;

causes an error. El V

1.3 A Collection of Useful Programs
We are now going to consider a family of related programs for doing

simple operations on character data. You will nd that many programs are just
expanded versions of the prototypes that we write here.

The standard library provides functions for reading and writing a charac-
ter at a time. getchar() fetches the next input character each time it is called,
and returns that character as its value. That is, after

c = getcharl)

then c contains the next character of input. The characters normally come
from the terminal, but that need not concern us right now. (More on that
topic in Chapter 7.)

The function putchar(c) is the complement of getchar:

putchar(c).

prints the character c on some output medium, again usually the terminal.
As with printf, there is nothing special about getchar and putchar.

They are not part of the C language, but they are universally available.

File Copying e

Given getchar and putchar, you can write a surprising amount of use-
ful code without knowing anything more about I/0. Thesimplest example is a

program which copies its input to its output a character at a time. In outline,

CHAPTER l A TUTORIAL INTRODUCTION 9

get a character
while (character is not end ofle signal)

putchar (the character just read)
gel a new character

Converting this into C gives

main() /~ copy input to output -/
{

int c;

c = getchar();
while (c l= EOF) {

putchar(c);
c = getchar(l;

I
}

The relational operator != is “not equal to.”
The main problem is detecting the end of the input. By convention,

getchar returns a value which is not a valid character when it encounters the
end of the input; in this way, programs can detect when they run out of input.
The only complication is that there are two conventions in common use about
what that end of le value really is. We have deferred the issue by using the
symbolic name EOF for the value, whatever it might be. In practice, EOF will
be either -1 or the null character '\O', so the program will have to be pre-
ceded by the appropriate one of

#define E'OF - 1

OI‘

#define EOF '\O'

in order to work properly.
You should distinguish the value EOF that getchar returns when end of

le is encountered from whatever mechanism is used by the operating system
that the program runs on. For example, on Unix, end of le is implicit when a
le is being read; from a terminal it can be entered by typing the character EOT
(“control-D”), but on other systems this convention will probably be different.

Assignment Expression
The program for copying would actually be written more concisely by

experienced C programmers. In C, any assignment statement, such as

c = getchar()

can be used in an expression; its value is the value of the right hand side. If
the assignment of a character to c is put inside the test part of a while, the le
copy program can be written

10 THE C PROGRAMMING LANGUAGE CHAPTER 1

mainl) /- copy input to output -/
l

int c;

while ((0 = getchar()) l= EOF)
putehar(c);

The program gets a character, assigns it to c, and then tests if it was the end of
le signal. If it was not, the body of the while is executed, printing the charac-
ter. The whlle then repeats. When the end of the input is nally reached, the
whlle terminates and so does main.

This version centralizes the input — there is now only one call to
getchar — and shrinks the program. Nesting an assignment statement in a

test is one of the places where C permits a valuable conciseness. (It’s possible
to get carried away and create impenetrable code, though, a tendency that we
will try to curb.)

It’s important to recognize that the parentheses around the assignment
statement within the conditional are really necessary. The “precedence” of =-

is lower than that of l—, which means that the relational test l= is done
before the assignment ==. So in the absence of parentheses, the statement

c = getcharll l- EOF

is equivalent to

c -= (getchar() l- EOF)*

This has the undesired e'ect of setting c to 0 or 1, depending on whether the
character fetched was an end of le or not.

Character Counting
The next program counts characters; it is a small elaboration of the copy

program.

main() /1 count characters in lnput ~/
{ .

long nc; ‘

nc -= O;

while (qetchar() l== EOF)
nc + +;

printf("%ld\n". nc);
}

The line

nc + +
shows a new C operator. ++ means increment by one. You could write
nc — nc + 1 but nc++ is most concise and often most eicient. There is a

CHAPTER 1 A TUTORIAL INTRODUCTION 11

corresponding decrement operator ——. ++ and —— can be either prex
operators (+ +nc) or postx (nc+ +); these have different values in expres-
sions, as we will discuss in Chapter 2, but both increment nc. 4

The character counting program accumulates its count in a long variable
instead of an int because on a PDP-11 the maximum value of an int is 32767,
and it would take relatively little input to overow the counter if it were
declared int. (In Honeywell and IBM C, long and int are synonymous and
much larger.) The %ld in the printf signals a long integer.

Some early versions of C do not support long variables; in that case, use
float or even double (double length float) to cope with bigger numbers. Here
is the character counting program with double. We will also use a for state-
ment instead of a while, to illustrate an alternative construction.

main() - /* count characters in input ~/
{

double nc;

for (no = O; getchar() !== EOF; nc = nc + 1)

printf(",%f\n", no);
I _ e

Some versions of C do not permit + + and — — to be applied to float or dou-
ble. In that case, you must write out the increment as we did here.

printf uses %l‘ for both oat and double. You could also use %.0f to
suppress printing the non-existent fraction part.

The body of the for loop here is empty, because all of the work is done in
the test and re-initialization parts. But the grammatical rules of C require that
a for statement have a body. The isolated semicolon, technically a null state-
ment, is there to satisfy that requirement. We put it on a separate line to make
it more visible.

Before we leave the character counting program, observe that if the
input contains no characters, the while or for test fails on the very rst call to
getchar, and so the program produces zero, the right answer. This is an
important observation. One of the nice things about while and for is that they
test at the top of the loop, before proceeding with the body. If there is nothing
to do, nothing is done, even if that means never going through the loop body.
Programs should act intelligently when handed input like “no characters”.
The while and for help ensure that they do reasonable things with extreme
cases.

Line Counting
The next program counts lines in its input. Input lines are assumed to

be terminated by the newline character \n that has been religiously appended
to every line written out. The program is again simple and familiar.

12 rm; c PROGRAMMING LANGUAGE CHAPTER 1

maini) /~ count lines in input ~/
i

int c, nl;

nl = O;

while ((c = getchar()) != EOF)
if (C -= '\n')

nl+ +;
printf("%d\n", nl);

The body of the while now consists of an if, which in turn controls the
increment nl+ +. if tests the parenthesized condition, and if it is true, does
the statement (or group of statements in braces) that follows. We have again
indented to show what is controlled by what.

The double equals sign =-— is the C notation for “is equal to” (like
Fortran’s .EQ.); it is pronounced “equals”. A separate symbol is used to dis-
tinguish the equality test from the single = used for assignment. Since assign-
ment is about twice as frequent as equality testing in typical C programs, it’s
appropriate that the operator be half as long.

Exercise 1-6: Write a program to count blanks, tabs, and newlines. El

Word Counting
The fourth in our series of useful programs counts lines, words, and

characters, with the loose denition that a word is any sequence of characters
that does not contain a blank, tab or newline. i

CHAPTER 1 A TUTORIAL INTRODUCTION 13

#define YES 1

#define NO O

main() /* count words, lines, chars in input -/
l

int c, nc, nl, nw, inword;
.

inword = NO;
nc - nl = nw -= O;

while ((c = getchar(ll != EOF) {

nc++;
if (c == ’\n')

nl++;
if (c == "|I c == ’\n' H c == '\t')

lnword = N0;
else if (inword == NO) {

inword = YES;
nw++;

}

}

printf("%d %d %d\n", nl, nw, nc);
}

Logically, this is a more complicated program. Every time the program
makes the transition from not being in a word to being in a word, it counts one
more word. The variable lnword records which state the program is in; ini-
tially it is “not in a word”, which is assigned the value NO.; We prefer the
symbolic constants YES and NO to the literal values 1 and 0 because they
make the program more readable. Of course in a program as tiny as this, it
makes little difference, but in larger programs, the increase in clarity is well
worth the modest extra effort to write it this way originally. You’ll also nd
that it’s easier to make extensive changes in programs where numbers appear
only as symbolic constants.

The line

nc=nl=nw=0;
sets all three variables to zero. This is not a special case, but a consequence of
the fact that the assignment statement has a value. It’s really as if we had
written

nc = (nl -= (n = 0)):

The opera ns OR, so the line

I c===="lIc=='\n'llc==’\t')
says “if c is a blank or c is a newline or c is a tab ...”. (The character \t is a
tab; it is best written this way so it is vis' »' ~ on a listing.) There is also && for
AND. Expressions connected by && a evaluated left to right, and it is

14 Tl-lE c PROGRAMMING LANGUAGE CHAPTER 1

guaranteed that evaluation will stop as soon as the answer is known. Thus if c
contains a blank, there is no need to test whether it contains a newline or tab,
so these tests are not made.

The example also shows the C else statement, which species an alter-
native action to be done if the condition part of an If statement is false. One
and only one of the two statements associated with an if-else is done. Either
statement can in fact be quite complicated. In the word count program, the
one after the else is another it.

Exercise 1- 7: Write a program which prints only the words in its input, one
per line. All non-alphabetic characters should be discarded. As a matter of
design, what should happen to digits? What about contractions like don't?
El

1.4 Arrays
Let us write a program to count the number of occurrences of each digit,

of white space (blank, tab, newline), and all other. characters. This is articial,
of course, but it permits us to illustrate several aspects of C in one program.

There are twelve categories of input, which is too many to use separate
variables for each, so we must at least use an array to hold the number of
occurrences of digits. Here is one version of the program:

meln() /- count digits, white space, others -/
{ \

Int c, i, nwhite, nether, ndigit[1O];

nwhlte -= nother - 0;
for (i - 0; i < 10; i++)

ndlgitlil == O;

while l(c =- getchar(ii != EOF)
if (c >— '0' && c <- '9’)

ndlqit[c—'0f]+ +;
eiseit (c -= "llc -== ’\n' lic ==-= ’\t’)

nwhite++;
else

nother++;

printi("dlgits = "7;

for(i - 0; i < 10; i++)
printf("%d ", ndigitlili;

printf("\nwhite space - %d, other - %d\n“, nwhite, nother);
}

The declaration

int ndigit[1Ol

declares ndigit to be an array of 10 integers. Array subscripts start at zero in C

CHAPTER 1 A TUTORIAL INTRODUCTION 15

(rather than 1 as in Fortran or PL/I), so the elements are ndlgit[O], ndigit[1],
ndigit[9]. This is reected in the for loops which initialize and print the

array.
A subscript can be any integer expression; this includes as special cases

integer variables like l, and integer constants.
This particular program relies heavily on the properties of the character

representation of the digits. For example, the test

c >= '0’ && c <== '9’

for a digit and the character-to-integer conversion
C Io!

work only if the digits are ordered and if there is nothing but digits between '0'
and '9’. Fortunately, this is universally true.

char variables and constants are essentially identical to lnt’s in arith-
metic contexts. Thus c—'O' is an integer expression with a value between 0
and 9 corresponding to the character '0’ to '9’ stored in c. By denition, arith-
metic involving char’s and/or int’s converts everything to int before proceed-
ing, so things work out quite naturally and conveniently. In fact, single char’s
are often just declared int s.

The pattern

if (condition)
statement

else if (condition)
statement

else
statement

occurs frequently in programs as a way to express a multi-way decision; here
the decision is digit, white space, or other. The code is simply read from the
top until some conditions is satised; at that point the corresponding statement
part is executed, and the entire construction exited. (Of course statement can
be several statements enclosed in braces.) If none of the conditions is satised,
the statement after the nal else is done. If that is omitted (as in the word
count program), no action takes place. There can be an arbitrary number of

else if (condition)
statement

groups between the initial if and the nal else. As a matter of style, it is
advisable to format this construction as we have shown, so that long decisions
do not march off the right side of the page.

The switch statement, to be discussed in Chapter 3, provides another
way to write a multi-way branch that is particularly suitable when the condition
being tested is simply whether some integer or character expression matches
one of a set of constants. We will present a switch version of this program in
Chapter 3.

16 THE C PROGRAMMING LANGUAGE CHAPTER 1

Exercise I-8: Write a program to remove any trailing blanks or tabs from
each line of input. El

1.5 Functions
A function is just a way to encapsulate some part of a computation in a

black box, which can then be used without worrying about its innards. So far
we have used only functions that have been provided for us: printf, getehar
and putchar. Now it’s time to write a few of our own.

To illustrate the points, let’s write a program to print the longest line in
the input. The basic outline’ is simple enough:

while (there's a new line)
if (it's longer than the previous longest)

save it and its length
print longest line

This makes it clear that the program divides naturally into pieces. One piece
gets a new line, another tests it, another saves it, and the rest control the pro-
cess.

Since things divide so nicely, it would be well to write them that way too;
that is the purpose of functions. Accordingly, let us rst write a separate func-
tion to fetch the next line of input; this is a generalization of getchar. Since
we want to make the function useful in other contexts, we’ll try to make it as

exible as possible. Let us say that the newline at the end of the line will be
trimmed off, so that the resulting line can be used as a character string. At the
minimum, getline has to return a signal about possible end of le; a more
generally useful design would be to return the length of the line, or -1 if end
of le is encountered.

When we nd a longer line than the previous longest, it must be saved
somewhere. This suggests a second function copy, to copy the new line to a

safe place.
Finally, we need a main program to control getline and copy. Here is

the whole program at once, so you can see w-hat it looks like.

CHAPTER 1 A TUTORIAL INTRODUCTION 17

#define MAXLINE 1000 /- maximum input line size+/

main() /* find longest line -/
{

int n, max;
char line[MAXLlNE], save[MAXLlNE];

max = -1; /=- longest length seen so far -/
while ((n = getline(line, MAXLlNE)) >= O)

if (n > max) {

max = n; " V

copy(line, save);
}

if (max > -1) A/~ there was a line */
printf(“%s\n", save);

l

getllne(s, Iim) /- read line into s; return length */
char s[];
int lim; /* maximum line length, including \O */
K

int i, c; 1

for (I = 0; i < lim—1 && (c = getchar()) !=1'\n' && c != EOF; i

s[i] = c;
siil == '\0';
if (C == EOF)

return(—1);
else

return(i);
l

copy(s1, s2) /~ copy s1 to s2; assumes s2 big enough */
char s1[1, s2[1;

{

int i;

for (i = 0; ($2[il = s1[il) l= ’\0'; i++l
I

Each function has the same form:

18 THE c PROGRAMMING LANGUAGE cnxrran 1

name(argument list, ifany)
argument declarations, if any

{

declarations
statements

The functions can appear in any convenient order, in one source le or in
several. (Whatever the allocation to source les, the denition of EOF must
be accessible to getline.) Of course if the input appears in several les, you
will have to do more work to compile and load it than if it all appears on one
le, but that is an operating system matter more than a property of the C
language. For the moment, we will assume that the three functions are all in
one le.

main and getline communicate through both a pair of arguments and a

returned value. In getllne, the arguments have to be declared appropriately;
this is done by the lines

char sl 1;

int Hm;

which specify that the rst argument is an array of indeterminate length, and
the second is an integer. The declaration of arguments goes between the func-
tion argument list and the opening left brace. The names used by getline for
the arguments are purely local to getllne, and not accessible to anyone else.

getllne uses a return statement to send a value back to the caller, just as

in PL/I. Any expression may occur in the parentheses. A return with no
expression causes control, but no value, to be returned to the caller. The same
is true of “falling o' the end” of a function, as in copy.

getline puts the character \0 (the null character, whose value is zero) at
the end of the array it is creating, to mark the end of a string of characters.
This convention is followed throughout C. For example, when a string con-
stant like

"hello, wor|d\n"

is written in a C program, the compiler terminates the array of characters
representing that string with a \0 so that functions such as printf can detect the
end.

If you examine copy closely, you will discover that it relies on the fact
that its input argument s1 is terminated by \0, and it copies this character onto
the output argument s2.

Exercise 1-9: Write a program to “fold” long input lines at the rst blank
or tab before the nth column of input. Make sure that n is a parameter in
your program. Do something intelligent if there are no blanks or tabs
before the specied column. El

CI-IAPTER 1 A TUTORIAL INTRODUCTION 19

1.6 Arguments — Call by Value
One aspect of function usage can trap programmers used to other

languages, particularly Fortran and PL/I. In C, all function arguments are
passed “by value.” This means that the called function is given the values of
its arguments in temporary variables (actually on a stack) rather than their
addresses. This leads to quite different properties than are seen with “call by
reference” languages like Fortran and PL/Ir, where the called routine is handed
the address of the argument variable, not its value.

The main distinction is that in C the called function cannot alter the ori-
ginal arguments in the calling function; it can only alter its private, temporary
copy.

Call by value is generally an asset, however, not a liability. Arguments
can be treated as conveniently initialized variables in the called routine. For
example, consider the function |og2(n), which returns the base 2 logarithm of
n (that is, the number of bits needed to hold n), where nlmust be a positive
int.

log2(n) /~ base 2 log of n -/
int n;
{

Int log;

log -= 1;
while ((n = n / 2) > 0)

log++;
return(lo9);

}

The argument n is used as a temporary variable, which is repeatedly divided by
two until it becomes zero; there is no need for another variable in I092 to hold
the same value. And whatever is done to n inside I092 has no effect on the
argument that I092 was originally called with.

With call by value, array arguments are processed without special effort,
since the name of an array is in effect the address of the rst element, and
once you know the address of something, it’s easy to work your will on it. We
have already done this with functions like getline and copy that store into
character arrays.

It is possible to arrange for a function to modify a variable in a calling
routine when necessary. The caller must provide the address of the variable to
be set; and the callee must declare it to be a pointer and reference it indirectly.
We will cover this in detail in Chapter 5.

20 THE c PROGRAMMING LANGUAGE CHAPTER 1

1.7 Scope
The variables in main (line, save, etc.) are private or local to main;

because they are declared within main, no other function can have direct
access to them. The same is true of the variables in the other functions; for
example, the variable I in getline is unrelated to the i in copy. Each local
variable in a routine comes into existence only when the function is called, and
disappears when the function is exited. Accordingly, local variables have no
memory from one call to the next and must be explicitlyinitialized upon each
entry. It is for this reason that local variables are also known as automatic vari-
ables, following terminology in other languages. (Chapter 4 discusses the
static storage class, in which local variables do retain their values between
function invocations.) -

There is a need to share data between routines, however, so C provides
two ways to achieve it. The rst is function arguments and return values,
which wehave used in all our examples so far. The second is a way to dene
variables which are external to all functions, that is, global variables which can
be accessed by name by any function that cares to. (This mechanism is rather
like Fortran COMMON or PL/I EXTERNAL.) External variables remain in per-
manent existence, rather than appearing and disappearing as functions are
called and exited.

To make a variable external, we have to dene it outside of any function,
and make an extern declaration in each function that wants to use it. To make
the discussion concrete, let us rewrite the longest-line program with line, save
and max as external variables. This requires changing the calls, declarations,
and bodies of getline and copy.

CHAPTER 1 A TUTORIAL INTRODUCTION 21

#define MAXLINE 1000 la maximum input llne size ~/

char line[MA)(-LINE]; /- input line ~/
char save[MAXLlNE]; /- longest line saved here ~/
int max; /- length of longest line seen so tar v/

main() /- find longest line ~/
{

int n;

max = -1;
while ((n = getllnel)) >= O)

if (n > max) {

max — n;

¢°DY()3

l
if (max >= 0)

prlntf("%s\n", save);
I

getline() /~ specialized version ~/

l
int l, c;
extern char linel l;

for (i = 0; i<MAXL|NE—1 && (c -= qetcharl)) l== '\n' && c != EOF; i++)
linelil = c;

linelll = '\O';
if (c == EOF)

returnl-1);
else

returnll);
}

copy() /~ specialized version -/
l

in’! i;
extern char linel 1. savel 1;

for (i = 0; (savelil = linelil) != '\O'; i++)

i

Roughly speaking, any function that wishes to access an external variable
must contain an extern declaration for it, although this can sometimes be done
by context instead of explicitly. The declaration is the same as others, except
for the added keyword extern. Furthermore, there must appear a denition of

22 THE C PROGRAMMING LANGUAGE CHAPTER l A

these variables which is external to all functions, as in the rst lines of the
example above.

In certain circumstances, the extern declaration can be omitted: if the
external denition for a variable occurs before its use in some function, then
there is no need for an extern declaration. The declarations in getllne and
copy are redundant.

There is a tendency to make everything in sight an extern variable
because it appears to simplify communications — argument lists are short and
variables are always there when you want them. But external variables are
always there, even when you don’t want them. This style of coding is fraught
with peril, though, since it leads to programs whose data connections are not at
all obvious - variables can be changed in unexpected and even inadvertent
ways. The second version of the longest line program is inferior to the rst,
partly for these reasons, and partly because we have destroyed the generality of
two quite useful functions by wiring into them the names of the variables they
will manipulate.

1.8 Summary
At this point we have covered what might be called the conventional

core of C. Variables and constants are the basic objects that a program
processes. Each variable must be declared to be of one of the types that C
supports. A variable may be an array, with subscripts running from zero to
one less than the size specied in the declaration. Arithmetic operators include
the usual +, -, ~, and /, and the increment and decrement operators + + and
— —. Control ow operations include If, perhaps with an else part; loops with
while or for; and statements grouped with braces. Functions communicate
with arguments, returned values, and external variables.

With this handful of building blocks, it’s possible to write useful pro-
grams of considerable size, and it would probably be a good idea if you paused
long enough to do so. The exercises that follow are intended to give you some .

suggestions for programs of about the level of complexity that we have written Q3; <4
here. All can be handled with small programs, no more than say 20 lines. §A ‘

Exercise 1-10: Write a program to replace all strings of blanks and tabs by ax
single blank. E1 Q“
Exercise I-11: Wr' a program to replace each tab by the sequencegzmd" }
each backspace by® E1

Exercise I-12: Writ a program to remove all comments from a C program.
Don’t forget to handle quoted strings properly. E1

CHAPTER 2: TYPES, OPERATORS AND EXPRESSIONS

Variables and constants are the basic data objects manipulated in a pro-
gram. Declarations state what the variables are, what type they have, and
perhaps what their initial values are. Operators specify what is to be done to
them. Expressions combine variables and constants to produce new values.
These are the topics of this chapter.

It’s hard to present these basic objects entirely in the context of complete
examples, so there will be fewer programs and more snippets and fragments
and rules than we like. This can make dry reading, but bear with us;
signicant examples will start again in Chapter 3.

2.1 Variable Names
Although we didn’t come right out and say so, there aresome restric-

tions on variable names. Names are made up of letters and digits; the rst
must be a letter. The underscore ‘_’ counts as a letter. Upper and lower case
are different; traditional C practice is to use lower case for variable names, and
upper case for symbolic constants.

T

Only the rst eight characters of a name are signicant; for external
names such as function names, only seven are signicant. (These numbers
may vary from machine to machine.) Furthermore, words like if, else, int,
lloat, etc., are reserved; that is, you can’t use them as variable names. (They
must be in lower case.)

Naturally it’s wise to choose variable names that mean. something, that
are related to the function of the variable, and that are unlikely to get mixed
up typographically. Anyone who uses I1 and ll in the same program deserves
what will inevitably happen.

2.2 Data Types and Sizes
There are only a few basic data types in C.

char a single byte, capable of holding one character in the local character
set.

int an integer, typically reecting the natural size of integers on the
host machine.

1

2 THE C PROGRAMMING LANGUAGE CHAPTER 2

float single precision oating point.
double double precision oating point.

In addition, there are a number of qualiers which can be applied to
int’s: short, long, and unsigned. short and long refer to dilferent sizes of
integers; unsigned implies that the number is to be treated as a logical quan-
tity, not an arithmetic one. The declarations for the qualiers look like

short int x;
long int y;
unsigned int z;

The word int can be omitted in such situations, and typically is.

The precision of these objects depends on the machine at hand; the table
below shows some representative values.

DEC PDP-11 Honeywell 6000 IBM 370 Interdata 8-32

char 8 bits 9 bits 8 bits 8 bits
ascii ascii ebcdic ascii

int 16 36 32 32

short 16 36 16 16

long 32 36 32 32
oat 32 36 ' 32 32

double 64 72 64 64

The intent is that short and long should provide different lengths of integers
where practical; int will normally reect the most “natural” size for a particular
machine. As you can see, each compiler is free to interpret short and long as

appropriate for its own hardware. About all you should count on is that short
is no longer than long.

2.3 Constants
Constants of ' these various types can be specied. int and float constants

have already been disposed of, except to note that the usual

1 23.4-566- 7

or

0.1 2E3

scientic notation for t|oat‘s is also legal. Every oating point constant is
taken to be double, so the “e” notation serves for both float and double.

Long constants are written in the style 123L. A lower case l can also be
used, but it’s hard to distinguish from the digit 1. An ordinary integer con-
stant that is too long to t in an int is also taken to be a long.

There is a notation for octal and hexadecimal constants: a leading 0
(zero) or Ox on an int or long constant implies octal or hex respectively. For
example, decimal 31 can be written as O37 in octal and 0x1f in hex.

CHAPTER 2 TYPES, OPERATORS AND EXPRESSIONS 3

A character constant is a single character written within single quotes, as

in 'x'. The internal value of a character constant is the numeric value of the
character in the machine’s character set. These values can participate in
numeric operations just as any other numbers, although they are most often
used in strings and in comparisons with other characters. A later section talks
about conversion rules.

Certain non-graphic characters, like newline, tab, etc., can be

represented in character constants by escape sequences like \n, \t, \O, \\
(backslash), \' (single quote), etc., which look like two characters, but are
actually only one.

A constant expression is an arithmetic expression that involves only con-
stants. Such expressions can be evaluated at compile time, rather than run
time, and accordingly may be used in any place that a constant may be. Exam-
ples are

char line[MAXL|NE+1l;

twopi = 2 * 3.141592654;

A string constant is a sequence of zero or more characters surrounded by
double quotes, as in

"I am a string"

or

”" /~ a null string */

The quotes are not part of the string, but serve only to delimit it. The same
escape sequences used for character constants apply in strings; of course \"
represents the double quote.

Technically, a string is an array whose elementsare single characters.
The compiler automatically places the null character \O at the end of each such
string, so programs can conveniently nd its end. This representation means
that there is no real limit to how long a string can be, but programs have to
scan one completely to determine its length. The physical storage requigd is A P
thus one more than the number of characters written between the quotes. The
function strlen computes the length of a character string, excluding the termi- l

nal \0.

4 THE C PROGRAMMING LANGUAGE CHAPTER 2

strlen(s) /- return length of s vl
char sl 1;

l
int i;

i = O;

Whll6 (s[il l= '\O')
l++;

return(i);
}

Be careful to distinguish between a character constant and a string that
contains a single character: "\n" is not the same as '\n .

2.4 Declarations
All variables must be declared before use. A declaration names the type

of variable, and is followed by a list of one or more variables of that type, as in

int lower, upper, step; '

char c. line[1000];

Variables can be distributed among declarations in any fashion; the lists above
could equally well be written as

int lower;
int upper;
int step;
char c;
char llne[1000];

This latter form takes more room, but is convenient for adding a comment to
each declaration or for subsequent modications.

Variables may also be initialized in their declaration, although there are

some restrictions. If the name is followed by an equals sign ‘==’ and a con-
stant, that serves as an initializer, as in

int i = 0; -

float twopi - 2 ~ 3141592654;
char quote == '\”;

Some early versions of the compiler allow the ‘=’ to be omitted; some only
allow external variables to be initialized.

If the variable in question is external or static, the initialization is done
once only, conceptually before the program starts executing. Local variables
are initialized each time the function they are in is called. Unitialized variables
have undened values, usually garbage.

Whether to initialize a variable in its declaration or in the code which fol-
lows is not always clear-cut. Consider

CHAPTER 2 TYPES, OPERATORS AND EXPRESSIONS 5

int i = 0;

while (slil l== '\O’)
i++;

and

int I;

i=0; .

while (sill v!= '\O’)
l+ +; *

We have a mild preference for the second version because the initialization of i

is closer to the code that manipulates it.
We will discuss initialization more as new objects are introduced.

2.5 Arithmetic Operators
The arithmetic operators are +, —, ~, /, and the modulus operator %.

Integer division truncates. The expression

a%b Q

produces the remainder when a is divided by b, and thus is zero when b
divides a exactly. For example, a year is a leap year if it is divisible by 4 but
not by 100, except that years divisible by 400 are leap years. Therefore

if ((year°/@400 == 0) ll (year%100 l= 0 && year%4 == 0))
it's a leap year

else 4

it's not

% cannot be applied to float or double. For both /and %, if either operand is
negative, the results are machine dependent.

The + and — operators have the same precedence, which is lower than
the (identical) precedence of ~, /, and %. Arithmetic operators group left to
right. The order of evaluation is not specied for associative and commutative
operators like ~ and +; the compiler is free to rearrange even parenthesized
computations as it wishes. Thus a+(b+C) may well be evaluated as

(a+b)+c.
Any underow or overow that occurs as an expression is being

evaluated is silently ignored.

c.

6 THE C PROGRAMMING LANGUAGE CHAPTER 2

2.6 Relational Operators
The relational operators are, in order of decreasing precedence,

> >== < <=
$3 !=

Operators on the same line have the same precedence. Relationals have lower
precedence than arithmetic operators, so expressions like i < lim—1 are taken
as i < (lim— 1), as would be expected.

More inte ting are the logical operators && ani/‘Q Expressions con-
nected by && o§re evaluated left to right, and evalua n stops as soon as

the truth or falsehood of the result is known. These properties are both critical
to writing programs that work. For example, here is a loop from the input
function getline which we wrote in Chapter 1.

for (i = 0; i < lim—1 && (c = getchari)) l= ’\n' && c != EOF; i++)
s[i] = c;

Clearly, it is necessary to check rst that there is room in the array s to sto g
Similarly, it would be unfortunate if c were tested against E0 getchar

was called: the call must be made before the charac 2 ' c is tested.
The precedence of && is greater than that o d both are lower than

the relationals, so that expressions like

i < lim—1 && (c == getchar()) l= ’\n' && c l= EOF

need no extra parentheses. But notice again that the precedence of l= is
higher than assignment, so parentheses are needed around

any new character, so the test i < lim—1 must be made rst. Not only th r\Q
but if this test fails, we must not go on and read another character.

(c = getchar()) != ’\n'

Exercise 2-1: Write the for loop above without &&. El

2.7 Type Conversions
What happens if you say

int l;

i= 'X' + 365

Not that anyone would, perhaps, but the question of type conversions requires
some discussion.

First, char’s and int’s may be freely intermixed in arithmetic expres-
sions: every char in an expression is automatically converted to an int. This
permits considerable exibility in certain kinds of character transformations.
One is exemplied by the routine atoi which converts a string of ASCII digits
into its numeric equivalent.

CHAPTER 2 TYPES, OPERATORS AND EXPRESSIONS 7

atoi(s)/¢ convert s to integer ~/
char sl 1;

i
int i, n;

n = O;

for (i = 0; s[i] >= '0' && s[i] <= '9'; i++)
n =10*n +s[i] —’O';

returnin);
I

‘The expression

s[i] — '0'

gives the numeric value of the character stored in slil only if the digits are

contiguous and in increasing order as characters; fortunately this is true for all
known character sets.

Exercise 2-2: Are the assignments

~\ /T@1o + slil — '0'

\t\§:§:,>c°\:a>,(and"

'\ ~ =10*n+s[i]—'0'
§<

equivalent? El

Another example is the routine lower which converts a single character
to lower case for the ASCII character set only.

|ower(c)
char c;
{

if (C >= ’A’&& c <= 'Z')
return(c —- ‘A’ + 'a')

else
return(c);

}

This works for ASCII because corresponding upper case and lower case letters
are a xed distance apart as numeric values and are contiguous — there is

nothing but letters between ‘a’ and ‘z’. This latter observation is not true of
the EBCDIC alphabet (IBM), so this code fails on such systems — it converts
more than letters.

Exercise 2-3: Write the corresponding function upper, which converts
lower case letters to upper case. El

There is one subtle point about the conversion of characters to integers.
If a character is negative does it become a negative integer (“sign extension”),
or is it positive? Regrettably, this varies from machine to machine. It is true
that by denition, any character in the machine’s standard character set will
never be negative, so the problem won’t arise there. But for arbitrary bit

8 THE C PROGRAMMING LANGUAGE CHAPTER 2

patterns stored in character variables, it can.
Another useful form of automatic type conversion is that rela' al

expressions like l >1 and logical expressions connected by && ande
dened to have value 1 if true, and 0 if false. Thus the assignment

leap - (year%40O -=- 0) ll (year%10O != O && year%4 ==— 0)

has the value 1 for leap years and 0 for non-leap years.
Implicit arithmetic conversions work much as expected. We have

5 Qalready seen char’s become int s, and int’s become float s, as in

cent = 5.0/9.0 ~ (fahr - 32)

All oating point arithmetic in C is done in double precision, so all float s in
an expression are converted to double.

In general, if an operator like + or ~ which takes two operands (a
“binary operator”) has operands of different types, the “lower” type is pro-
moted to the “higher” type before the operation proceeds. The result is of the
higher type. More formally, for all arithmetic operators, the following
sequence of conversion rules is applied.

char is converted to int and float is converted to double.
Then if either operand is double, the other is converted to double,
and the result is double.
Then if either operand is long, the other is converted to long, and the
result is long.
Then if either operand is unsigned, the other is converted to un-
signed, and the result is unsigned.
Otherwise the operands must be lnt, and the result is int.

Conversions also take place across assignment statements; the value of
the right side is converted to the type of the left. If x is float and l is lnt, then

x-l;
and

i==x;

both cause conversions; float to int causes truncation of any fractional part.
Finally, explicit type conversions can be put in any expression with a

construct called a cast. In the construction

(We) expression

the expression is converted to the named type. For example, the library rou-
tine sqrt expects a double argument, and will produce nonsense if inadver-
tently handed something else. So if n is an integer,

s_qrt((double) n)

converts n to double before passing it to sqrt.

CHAPTER 2 TYPES, OPERATORS AND‘ EXPRESSIONS 9.

Early versions of C do not provide the cast operation; in that case, you
must do your own conversions by assigning to explicit temporary variables of
the proper type.

2.8 Increment and Decrement Operators
C provides two unusual operators forincrementing and decrementing

variables. The increment operator + + adds l to its operand; the decrement
operator ——- subtracts l. We have frequently used ++ to increment vari-
ables, as in

if (c == '\n’)
nl++;

The unusual aspect is that ++ and —— may be either prex (before
the variable, as in + +i), or postx (after the variable: i+ +). In both cases,
the effect is to increment i, but the value of the expression + +i is i after it is
incremented, while the value of i++ is i before it is incremented. Thus if i is
5, then

x = i++
sets x to 5, butx=>r
sets x to 6. In both cases, i becomes 6.

In a context where no value is wanted, just the incrementing effect, as in

if (c == '\n’)
nl++;

choose prex or postx according to taste. But there are situations where one
or the other is specically called for. For instance, consider the function
squeeze(s, c) which removes all occurrences of the character c from the
string S.

squeeze(s, c) /~ delete all c from s */
char sl 1, c; t

I

int i, j;

for (i == j = O; s[i] != ‘\0'; i++)
it (slil != c)

s[j+ +1 = slil;
sill = '\0';

Each time a non-c occurs, it is copied into the current] position, and only then
is j incremented to be ready for the next character.

Of course, we could have written the longer form

10 "me c PROGRAMMING LANGUAGE crmrrea 2

if (sill 1- c) l
SUI = sill:
i++;

l

but the shorter form is better, and, after a bit of experience, just as easy to
read.

As another example, perhaps more compelling, here is a function called
strcatis, t), which concatenates the string t to the end of the string s. strcat
believes that there is enough space in s to hold the combination.

streatis, t) /~ concatenate t to end of s -/
char sl 1. t[1;

i
int I, j;

i = 1 — O;
while (s[i]) la find end of s -/

i+ +;
while (sli+ +1 == t[i++]) /* copyt ~/

I

The postx + + is applied to both i and j to make sure that they are both in
position for the next pass through the loop.

The test could be written as ‘ -\.»\'
W 3

while (s@= 16)) != '\o') /~ copy t -/
but since \0 is zero, and since while tests whether the parenthesized expres-
sion is zero or not, the l= ’\0' is redundant and can be omitted. Although
you might argue that this is bad form, the \0 is very often elided.

2.9 Bitwise Logical Operators
C provides a full set of bitwise logical operators in addition to the usual

arithmetic ones. These include & (bitwise AND), I (bitwise inclusive OR), and
‘ (bitwise exclusive OR). The classic application of 8| is masking off everything
but the last 7 bits, to make an integer into an ASCII character:

c == n & 0177;

You should carefully distinguish the bitwise operators 8 and I from &&
an(/Ia)/hich imply left-to-right evaluation of a truth value. For example, if x is
1 an y is 2, then x & y is zero while x && y is one.

The shift operators << and >> perform left and right shifts of their
left operand by the number of bit positions given by the right operand. Thus
x << 2 shifts x left by two positions, equivalent to multiplication by 4.
Whether a shift is logical or arithmetic depends: if the variable in question is
unsigned, then the shift is logical; otherwise it is arithmetic on some

CHAPTER 2 TYPES, OPERATORS AND EXPRESSIONS ll

machines, so beware.

The unary negation operator I converts a non-zero or true operand into
0, and a zero or false operand into 1. A common use of .l is in constructions
like

it (linword)

rather than

if (inword == 0)

It’s hard to generalize about which form is better. Constructions like linword
read quite nicely (“if not in word”), but more complicated ones can be hard to
understand.

The unary operator ' gives the one’s complement of integers; that is, it
converts each 1 bit into a 0 bit and vice versa. This operator typically nds use
in expressions like

x &= "077

which masks the last six bits of x to zero.

2.10 Assignment Operators
Expressions like

i == i + 10

abound in typical programs. Expressions like these, where the left hand side is
repeated on the right, can be written in the compressed form

i-l-=10
using an assignment operator like + =.

Any binary operator op, that is, one that has a left and right operand,
has a corresponding assignment operator op=. op is one of

+—~/%<<>>&‘|
If e1 and e2 are expressions, then

e1 op= e2

is equivalent to

e1 = e1 op (e2)

except that e1 is computed only once. The parentheses around e2 should be
noted — for example,

x ~= y + 1

is actually

12 "me c raocrummrno LANGUAGE CHAPTER 2

x-=x~(y+1)
ratherthan

x-x~y+1
The type of an assignment expression like i +== 10 is the type of its left
operand.

The conciseness of an assignment operator is not much saving for an
expression as simple as i + == 10, but for something like

YYval[YYDvlD3+D41 + vvr>vln1+n2ll +- 2

it is well worthwhile. It makes the code easier to understand, since the reader
doesn’t have to check painstakingly that two long expressions are indeed the
same. And it may help the compiler to produce more eicient code.

Exercise 2-4: Rewrite the I092 function of Chapter 1 with an assignment
operator. El

As an example that combines logical and assignment operators, here is a

function called bitcount which counts the number of 1 bits in its integer argu-
rnent.

bitcount(n) /~ count 1 bits in n -/
unsigned n;

i
int b;

tor(b == 0;nl— 0;n >>= 1)
if in & O1)

b++;
returnlb);

l

Declaring the argument to be unsigned ensures that when n is right-shifted,
vacated bits will be lled with zeros, not with sign bits; regardless of the
machine the program is run on.

The loop can also be written as

ior(b == 0; n 1- 0; n >>= 1)
b += n % 2;

since n % 2 is l if n is odd, that is, if its bottom bit is turned on, and zero oth-
erwise.

Early versions of C used the form =-op instead of op= for assignment
operators. This leads to some nasty ambiguities, typied by

x==—1

Does this decrement x or set it to -1? The only way to be sure is to add a

space at the right place, to make either

CHAPTER 2 TYPES, orermroas AND EXPRESSIONS 13

x - — 1

01'. J

x==—1

If your C compiler supports the new form, use it.
Exercise 2-5: AND’ing a value n with n—1 deletes the rightmost 1 bit in n.
Use this fact to write a faster version of bitcount. El

2.11 Assignments as Values
We have already used the fact that the assignment statement has a value

and can occur in expressions; the most common example is

whlle ((0 = getehar()) != EOF)

The other assignment operators (+-, —-=, etc.) can also be used in
this way, although it is a less frequent occurrence. As an illustration, here is a

line from a program that we will discuss in detail in Chapter 4:

val += (c — '0') / (den -— 10.0);

den is multiplied by 10 before it in turn is used to divide c — '0’; the result is

then added to val.
Increment and decrement operators and nested assignment statements

cause “side elfects” — some variable is changed as a by-product of the evalua-
tion of an expression. In any expression involving side effects, there can be
subtle dependencies on the order in which parts of the expression are
evaluated. One unhappy situation is typied by

a[i+ +1 - i;

The question is whether I is incremented before or after it’s assigned to a. The
compiler can obviously do this in different ways, and generate different
answers depending on its interpretation. Normally this kind of code is only
written inadvertently, but you should be aware of the possibility.

Exercise 2-6: Write a program to make all ASCII non-printing characters
visible. El

. 1

~ .

CHAPTER 3; CONTROL FLOW

The control ow statements of a language specify the order in which
things get done. We have already met the most common control ow con-
structions of C in earlier examples; here we will complete the set, and be more
precise about the ones discussed before.

3.1 Braces
The braces { and } are used to group statements together so that they are

syntactically equivalent to a single statement. The braces that surround the
statements of a function are one obvious example; braces around multiple
statements after an if or else or while or for are the other. Braces can also be
used to delimit a “block” in which local variables can be declared; we will talk
about this in Chapter 4.

3.2 If-Else
if-else is used to make decisions. Formally, the syntax is either

if (expression)
statement .

OI‘

’ if (expression)
statement

else
statement

The expression is evaluated; if it is true (that is, if the expression has a non-zero
value), the rst statement is done. If it is false (zero) (“false”) and if there is
an else part, the second statement is done.

Since an if simply tests the numeric value of an expression, certain cod-
ing shortcuts are possible. The most obvious is writing

if (expression)

instead of

1

2 THE C PROGRAMMXNG LANGUAGE CHAPTER 3

if (expression l== O)

Sometimes this is natural and clear; at other times it is cryptic and unsafe, so
watch out.

Because the else part of an if-else is optional, there is an ambiguity
when an else is omitted from a nested if sequence. This is resolved in the
usual way — the else is associated with the previous un-else’ed if. For exam-
p'le, in

if (n > 0)
if (a > bl

z = a;
else

z = b;

the else goes with the inner if, as we have shown by indentation. If that isn’t
what you want, braces must be used to force the proper association:

nm>ml
if(a>b)

Z==8;

else
z = b;

The ambiguity is especially pernicious in situations like:

if .(n.-> 0):
for (i == 0; i <en; i++)

nsm>m{
printf("...");
return(il;

printf(“error -— n is zero\n");
else

The indentation shows unequivocally what you want, but the compiler doesn’t
get the message. This kind of bug can be very hard to nd.

By the way, notice that there is a semicolon after z = a in

i if (a > bl
z = a;

else
z = b;

This is because grammatically, a statement follows the if, and statements must
be terminated by a semicolon.

CHAPTER 3 CONTROL FLOW 3

3.3 Conditional Expressions
This last example of course computes in z the maximum of a and b.

The ternary operator 7 : provides an alternate way to write this» and similar
constructions:

z=(a>b)?a:b; /~z==max(a,b)*/
In the expression

p 7 q : r

the expression p is evaluated. If it is non-zero (true), then the value of the
conditional expression is the value of the expression q; otherwise it is r. Only
one of q and r is evaluated. If q and r are of different types, the type of the
result is based on the conversion rules discussed in the previous chapter. For
example, if f is a float, and n is an Int, then the expression

(n>0)?f:n '

is of type float regardless of whether n is positive or not.
Parentheses are not necessary around the rst expression of a condi-

tional expression, since the precedence of ? : is very low. They are advisable
anyway, however, since they make the condition part of the expression easier
IO SC6.

The conditional expression often leads to succinct code. For example,
this loop prints N elements of an array, 10 per line, separated by thraeblanks,
with no extra characters, and each line (even the last) properly terminated by a k
single newline. NJ 5’

for(i=-O;i<N;i++) ,//73
printl("%d°/us", all], (i==-N—1 || i%10= =9) '2 "\n" 1 " ");

A newline is printed every 10 elements, and after the Nth. All other elements
are followed by three blanks. Although this might look tricky, it’s instructive
to try to write it without the conditional expression.

Exercise 3-1: Write the printing loop without a conditional expression. El 4.

Exercise 3-2: Rewrite the function lower (see Chapter 2) to convert upper
case letters to lower case, using a conditional expression instead of if-else.
El .

3.4 Else-If
The construction

4 THE C PROGRAMMING LANGUAGE CHAPTER 3

if (expression)
statement

else if (expression)
SMZGMEHI

else if (expression)
statement

else
Sf0l€m€!I[

occurs so often in programming that it is worth a brief separate discussion.
This sequence of if’s is the most general way of writing a multi-way decision.
The expression’s are evaluated in order; if any expression is true, the statement
associated with it is executed, and then the whole chain is exited. The code for
each statement is either a single statement, or a group in braces.

The last else part handles the “none of the above” or default case
where none of the other conditions was satised. Sometimes there is no expli-
cit action for the default; in that case it can be omitted.

To illustrate a three-way decision, here is a binary search function that
decides if a particular value x occurs in the sorted array v. It returns the posi-
tion (a number between 0 and n-1) if x occurs in v, and -1 if not.

binary(x, v, n) /~ find x in v[0] v[n—1] -/
i{nt x, v[1. n:

int low, high, mid;

low = 0;
high = n — 1;
while (low <= high) {

mid = (low+highl / 2;
if (x ==== v[mid])

return(mid);
else If (x < vlmidll

high = mid — 1;
else

T low = mid + 1;
}

return(—1);
l

The fundamental decision is whether x is less than, equal to, or greater
than vlmidl at each step; this is a natural for else-if. Since the rst case ends
with a return, there is no need for the else that follows; we could remove it.
But the version presented is preferable, since it better shows the three-way
nature of the decision.

CHAPTER 3 CONTROL FLOW 5

3.5 Switch
The switch statement is a special multi-way decision maker that tests

whether an expression matches one of a number of constant values, and
branches accordingly. In Chapter 1 we wrote a program to count the number
of each digit, white space, and all other characters, using an if else if
else. Here is the same program with switch.

main() /* count digits, white space, others ~/
i

int c, i, nwhite, nother, ndigit[1O];

nwhite = nother = 0;
fort(i = 0; i < 10; i++)

ndigitlil = O;

while ((0 = getchari)) != EOF)
switch (0) i

case '0':
case '1 ':
case '2‘:
case '3':
case '4':
case '5’:
case '6’:
case '7’:
case '8':
case '9’:

di9lt[c—'0'l + +;
break;

case ’ ':
case '\n':
case ’\t’:

nwhite + +;
break;

default:
nother+ +;
break;

printf("digits = ");
for (i = O; i < 10; i++)

printf("%d ", ndigitlili;
printt("\nwhite space = %d, other = %d\n", nwhite, nother);

The switch compares the expression in parentheses (in this program the
character 0) to all the cases. Each case must be labelled by an integer constant,

6 THE C PROGRAMMING LANGUAGE CHAPTER 3

which includes character constants like '0'. If a case matches, execution starts
at that case. The case labelled default is executed if none of. the other cases is
satised. (A default is optional; if it isn’t there, and none of the cases

matches, no action at all takes place.) Cases and default can occur in any order.
The break statement causes an immediate exit from the switch.

Because cases are just labels, after the code for one case is done, execution
falls through to the next unless you take explicit action to escape. break and
return are the most common ways to leave a switch. break also causes an
immediate exit from while and for loops as well, as will be discussed later in
this chapter.

Falling through cases is a mixed blessing. On the positive side, it allows
multiple cases for a single action, as with the blank, tab or newline in this
example. But it also implies that normally each case must end with a break to
prevent falling through to the next. Falling through from one case to another
is not robust, being prone to disintegration when the program is modied.
With the exception of multiple labels for a single computation, fall-throughs
should be used sparingly.

As a matter of good form, put a break after the last case (the default
here) even though it’s logically unnecessary. Some day when another case gets
added at the end, this bit of defensive programming will save you.

Exercise 3-3: Write a function expand(s, t) which converts characters like
newline into visible escape sequences like \n as it copies s to t. Use a

switch. El

3.6 Loops — while and for
We have already encountered the while and for loops. In

while (expression)
statement '

the expression is evaluated. if it is non-zero, statement is executed and expres-

sion is re-evaluated. This cycle continues until expression becomes false, at
which point execution resumes after statement.

The for statement

for (init; expression; re-init)
statement

is equivalent to

initj
while (expression) {

SZGIEMCIII

re-init;
} ,

init and re-init are expressions. Any of the three parts can be omitted. If init
or re-init is left out, it is simply dropped from the expansion. If expression is
not present, it is taken as permanently true, so

CHAPTER 3 CONTROL FLOW 7

for(;;)l

is an “innite” loop, presumably to be broken by other means (such as a
break or return).

Whether to use while or for is largely a matter of taste. For example, in

/- skip white space characters ~/
while ((c = getcharl)) == ’ ’ ll c == ’\n' ll c == ’\t)

there is no initialization or re-initialization, so the while seems most natural.
The for is clearly superior when there is a simple initialization and re-

initialization, since it keeps the loop control statements close together and visi-
ble at the top of the loop. This is obvious in . .

f0r(i=O;i<N;i++) '

which is the C idiom for processing the rst N elements of an array, the analog
of the Fortran or PL/I DO loop. .

As a larger example ‘(which also makes use of some other constructs
we’ve discussed), here is another version of atoi for converting a string to its
numeric equivalent. This one is more general; it copes with optional leading
white space and an optional + or — sign. (Chapter 4 shows atof, which does
the same conversion for oating point numbers.)

The basic structure of the program reects the form of the input:

skip blanks, ifany
get sign, ifany
get integer part

Each step processes its part if present, and leaves things in a clean state for the
next part. If the whole process terminates on a character that is not white
space, then there was some sort of error, although we won’t do anything about
that yet.

8 THE C PROGRAMMING LANGUAGE CHAPTER 3

atoi(s)/~ convert s to integer */
char sl 1;

int i, n, sign = 1;

for (i = O; s[i] == ' ' Ii s[i] == '\n' Ii s[|] == '\t’; i++)
/* skip white space ~/

if ($[i] === ’+’ ll Slil == '-’) /* sign */
sign = (s[i++]==’+') 7 1 : -1;

for (n — 0; s[i] >= '0' && s[l] <= '9'; i++) /- integer part ~/
n=10*n+s[i]—’O';

return (sign -=

i
n);

The advantages of keeping loop control centralized are even more obvi-
ous for nested loops. The following function is a Shell sort, for sorting an

array of integers. The basic idea of the Shell sort is that in early stages, far
apart elements are compared, rather than adjacent ones, as in simple inter-
change sorts. This tends to eliminate large amounts of disorder quickly, so

later stages have less work to do. The interval between compared elements is

gradually decreased to one, at which point the sort effectively becomes an adja-
cent interchange method.

shel|(v, n) /* sort v[O] v[n—1] into increasing order -/
int vl 1, n;"

{

int QED» L L K;

for (gap = n/2; gap > 0; gap /= 2)
for (i = gap; i < n; i++)

} r

for ti=i—gap: i>=o aa v[i1>v[i+gapl;i —= cap) i
k = vlil;
vlil = vll+9aP1:
vli+9ar>l == k:

The outermost loop controls the gap between compared elements, shrinking it
from n/2 by a factor of two each pass until it becomes zero. The middle loop
compares elements separated by gap; the innermost loop reverses any that are
out of order. Since gap is eventually reduced to one, all elements are eventu-
ally ordered correctly.

Writing this code with while expands it by nine lines; the conciseness of
the for adds clarity.

CHAPTER 3 CONTROL FLOW 9

3.7 Loops — do-while
The while and for share the desirable attribute of testing the loop at the

top, rather than at the bottom, as we discussed in Chapter 1. The third loop in
C, the do-while, tests at the bottom after making one pass through the body.
The syntax is

do
statement

while (expression)

statement is executed, then expression is evaluated. If it is true, statement is
evaluated again, and so on. If the expression becomes false, the loop ter-
minates.

As might be expected, the do-while is much less used than while and
for. Nonetheless, it is from time to time valuable, as in this function for con-

I verting a number to a character string, the inverse of atoi. The job is slightly
more complicated than might be thought at rst, because the easy methods of
generating the digits generate them in the wrong order. We have chosen here
to generate the string backwards, then reverse it.

itoa(n, s) /=~ convert n to characters In s ~/
char sl 1;

int n;

{

int c, i, j, sign = 1;

if (n < 0) { /-I record sign ~/
sign = -1;
n = —n;

}

i - 0;
do { /* generate digits in reverse order */

S[i++] = I1 °/o 10 + '0';
}whi|e ((n /= 10) > 0);
if (sign < 0)

s[i+ +1 = '—’;
' s[i] = '\0';/“g for (i—-@=0;j<i; i——@p++){ /*reverses*/

C0»/1 ~ c = slil;
slil = s[j];
s[j] _= c;

l
I

The do-while is necessary, or at least convenient, since at least one character
must be installed in the array s, regardless of the value of n. We also used
braces around the single statement that makes up the body of the do-while,
even though it is unnecessary, so the hasty reader will not mistake the while

10 THE C PROGRAMMING LANGUAGE CHAPTER 3

part for the beginning of a while loop.
Exercise 3-4: Our version of itoa does not handle “negative infinity”, that
is, the value of n equal to -2“’°'ds'z°. Explain why not. Modify it to print
that value correctly. El

3.8 Break and Continue
It is useful to be able to control loop exit by other means than simply

testing at the top. The break statement provides an early exit from for, while,
and do, just as from switch.

The following program trims blanks and tabs from each line of input,
using a break to exit from a loop when the last non-blank, non-tab is found.

main() /* remove trailing blanks and tabs ~/
i

int n;
char line[MAXLlNE];

while (in - getline(line, MAXLlNE)) >= 0) i
while (——n >== 0)

if (lIne[n] l= ‘ ' && lineinl l== '\t’)
break;

line[n+1l = '\0’;
printf("%s\n", line);

i

getllne returns the length of the line with the terminating \n removed.
The inner while loop starts at the last character of line (recall that ——n
decrements n before using the value), and scans backwards looking for a non-
blank, non-tab. The loop is broken when one is found, or when n becomes
negative (that is, when the beginning of the string is reached). This is correct
behavior even when an empty line is encountered, for which n is zero.

An alternative to break is to put the testing in the loop itself:

while ((n = getline(line, MAXLlNE)) >= 0) i
while (——n >= O && (llne[n] === ' ’ ll line[n] === '\t'))

This is inferior to the previous version, because the test is much harder to
understand. Compound tests with parentheses and different operators should
be avoided.

The continue statement is related to break (although empirically much
less used); it causes the next iteration of the enclosing loop (for, while, do) to
begin. In the while and do, this means that the test part is executed immedi-
ately; in the for, control passes to the re-initialization step. (continue applies

CHAPTER 3 CONTROL FLOW 11

only to loops, not to switch.)
As an example, this fragment processes only positive elements in the

array a; negative values are skipped.

for (I = 0; i < N; i++){
if (a[i] < 0) /- skip negative #1

connue;
/# do positive ~/

continue seems most often used in situations like this, when the part of the
loop that follows is complicated, so that turning a logical condition around and
indenting another level would complicate the program too much.

3.9 goto’s and Labels
C provides the innitely-abusable goto statement, and labels to branch

to. Formally, the goto is never necessary, and in practice it is almost always
easy to write code without it. Certainly we don’t use goto in this book.

Nonetheless, we will suggest a few situations where goto’s may nd a

place. The most common use is in error-handling code when it is necessary to
abandon processing in some deeply nested structure.

for ()

for ()

(disaster)
goto error;

error:
clean up the mess

This organization is handy if the error-handling code is non-trivial, and if
errors can occur in several deeply nested places.

As another example, consider the problem of ndi'ng the rst negative
element in a two-dimensional array. One possibility is

for (i = 0; i < N; i++)
for (j = 0;] < M;]++)

if (v[i]Ul < 0)
goto found;

/* didn't find */

found:
/- found one at position i, j 1/

This can be written without a goto, at the price of some repeated tests or an
extra variable; this is always the case.

12 THE c PROGRAMMING LANGUAGE CHAPTER 3

found = O;

for (i = 0; i < N && lfound; i++)
for (j = 0;] < M && lfound; i++)

found = vlilljl < 0;
if (found)

/* it was at i—1,j—1 ~=/

else
/* not found */

A label has the same form as a variable name. It can be attached to any
statement in the same function as the goto. It is currently possible to branch
into a set of statements in braces, or to the else part of an if, etc., but these
are bad practices indeed.

CHAPTER 4: FUNCTIONS AND PROGRAM STRUCTURE

Functions break large computing tasks into smaller ones, and enable
people to build on what others have done instead of starting over from scratch.
Appropriate functions can often hide details of operation from parts of the pro-
gram that don’t need to know about them, thus clarifying the whole, and eas-
ing the pain of making changes.

C has been designed to make the use of functions easy and efcient. C
programs generally consist of numerous small functions rather than a few big
ones.

Most programmers are familiar with “library” functions for input and
output (qetchar, putchar) and numerical computations (sin, cos, sqrt). In
this chapter we will show more about writing new functions.

4.1 Basics
To begin, let us design and write a program to print each line of its input

that contains a particular “pattern” or string of characters. (This is a special
case of the Unix utility program grep). For example, searching for the pattern
“the” in the set of lines

Now is the time
for all good
men to come to the aid
of their party.

will produce the output

Now is the time
men to come to the aid
of their party.

The basic structure of the job falls neatly into three pieces:

while (there's a new line)
if (the line matches the pattern)

print it

If you put the code for all of this in the main routine, y0u’ll create an
unbelievable mess. (Try it.) A better way is to use the natural structure to

1

2 THE C PROGRAMMING LANGUAGE CHAPTER 4

advantage, by making each part a separate function. Irrelevant details can be
buried in the functions, and the chance of unwanted interactions minimized.
Three small pieces are easier to deal with than one big one.

“while there’s a new line" is getllne, a function that we wrote in
Chapter 1, and “print it” is printi, which someone has already provided for us.
This means we need only write a routine which decides if the line contains an
occurrence of the pattern.

We can solve that problem by stealing a design from PL/I: the function
indexls, t) returns the position or index in the string s where the string t
begins. We use 0 rather than 1 as the starting position in s, since arrays begin
at position zero, and then index can return ‘-1 if s doesn’t contain a t. The
index function centralizes some fairly messy logic in a single place, and pro-
vides a routine that may well prove useful in other contexts as well. (index
wasn’t written for this book — we wrote it for something else quite a while
ago.) If we later need more sophisticated pattern matching we can index by a
more general pattern matcher; the rest of the code remains the same.

Given this much design, lling in the details of the program is straight-
forward. Here it is in its entirety, including getline, so you can see how the
pieces t together.

mainl) /- find all lines matching a pattern ~/
l

}

char linelMAXLiNEl;

while (getlinelline, MAXLINE) >= O)
If (indexlline, "the") >== 0)

printf("°/»s\n", line);

getline(s, llm) /~ read line Into s; return length */
char sl 1;

int llm;
{

l

int i, c;

for (i == O; i < llm—1 && (c == getchari)) l= '\n' && c l== EOF; l++)
slil = c: '

slil - ’\0‘;
returnlc ==== EOF 7 -1 : i);

CHAPTER 4 FUNCTIONS AND PROGRAM STRUCTURE 3

index(s, t) /~ return index of t in s, -1 if none ~/
char sl 1. tl 1;

l
Int i, j, k;

5 for (i -= o;_sli1i='\o';i++)(
wqf@M,v\|'< tor (1 =_ i, k =- 0; tlkl 1- '\o' as s[1] =- tlkl; 1+ +, k++)

it (tlkl '= =- '\o')
return(i);

l
return(—1);

Burying the pattern tobe searched for ("thef') in the middle of main is not the
most general of mechanisms, but we haven’t yet discussed how to initialize
character arrays; we’ll return to this topic in due course.

Each function has the form

name(argumenr list, ifany)
argument declarations, ifany
l

statements of function, it any
i

As noted, the various parts may be absent; a minimal function is

dummvl) I }

which does nothing. (A do-nothing function is sometimes useful as a place
holder during program development.)

A program with multiple functions is just a set of individual function
declarations, as shown. Each function is self-contained, and the only commun-
ication between the pieces is (in this case) by arguments and values returned
by the functions. The functions can occur in any order, and the source pro-
gram can be split into multiple les, so long as no function is split. And of
course the denition of EOF has to be accessible as getline is compiled.

The return statement is the mechanism for returning a value from the
called function to its caller. Any expression can follow return, as in

return (expression)

It is common practice, though not required, to put parentheses around the
expression, as we have done.

The calling function is free to ignore the returned value if it wishes.
Furthermore, there need be no expresion after return; in that case, no value is
returned to the caller. If there is no return statement in a function, control
returns to the caller with no value when the function “falls o" the end” by
reaching the closing right brace. It is not illegal, but probably a sign of trouble,
if a function returns a value from one place and no value from another.

4 THE C PROGRAMMING LANGUAGE CHAPTER 4

4.2 Functions Returning Non-Integers
So far, none of our programs has contained any declaration of the type

of a function. This is because by default a function is implicitly declared by its
appearance in an expression or statement, such as

while lgetlineiline, MAXLINE) >= 0)

In such cases, the context of a name followed by a left parenthesis is sufcient
declaration. Furthermore, by default the function is assumed to return an int.
Since char promotes to Int in expressions, there is no need to declare func-
tions that return char. These assumptions cover the majority ofcases, includ-
ing all of our examples so far.

But what happens if a function must return some other type? Many
numerical functions like sqrt, sin, and cos return double; other specialized
functions return other types.

To illustrate how this is done, let us write and use the function atof($),
which converts the string s to its oating point equivalent. atof is an exten-
sion of atoi, which we wrote versions of in Chapter 2 and 3; it handles an
optional sign and decimal point, and the presence or absence of either integer
part or fractional part. (This is not a high-quality input conversion routine;
that takes more space than we care to use.)

To communicate the fact that atof returns float, the function itself must
declare the type of value it returns, since it is not int. The type precedes the
function name, like this:

float atoflsl /* convert s to float #/
char s[1;

{

float den = 1.0, val = 0.0;
int i, sign = 1;

for (i = O; s[i] === ' ' ll s[i] === ’\n’ ll slil == ’\t’; i++)
; /~ skip white space */

if (s[i] == '+' ll S[i] === '-') /* sin */
sign — (s[i++]===’+’) 71 : -1;

for (val = 0; s[i] >= '0' && s[i] <= '9'; i++) /~= integer part ~=/

val = 10 * val + s[i] — '0';
if (slil ==- '.') /* decimal point *1

i+ +;
for (; s[i] >= '0' && s[i] < = '9'; i++)/# fraction part -/

val += (slil — '0’) / (den *= 10.0);
returnlsign ~ val);

Second, and just as important, the calling routine must state that this
function returns a non-int value. The declaration is shown in the following
rudimentary desk calculator (barely adequate for check-book balancing), which
reads one number per line, optionally preceded by a sign, and adds them all

CHAPTER 4 FUNCTIONS AND PROGRAM STRUCTURE 5

up, printing the sum after each input.

main() /~ rudimentary desk calculator */
{

» float sum, atof()2

char line[MAXLlNE];

sum == 0;
while (getline(line, MAXLINE) >= 0) {

sum += atofllinel;
prlntf("\t%f\n", sum):

I

The declaration

float sum, atof();

says that sum is a float variable, and that atof is a function that returns a float
value. Unless atof is properly declared in both places,‘ C assumes that it
returns an integer, and you’ll get nonsense answers.

If atof and main are in the same source le, a type inconsistency will be
detected by the compiler. But (as is more likely)' if atof were compiled
separately. the mismatch would not be detected, atof would return a float,
which main would treat as an int, and garbage would result. .

~ Given atof, we can write atof (convert a string to Int) in terms of it:

atoi(s) /=- convert s to Integer ~/
char s[1;

l
float atof();

return(atof(s)); ...

Notice the structure of the declarations. Type conversion in return is a general
rule — the value of the expression in

return(éxpression)

is converted to the type of the function before the return is taken. Therefore,
the value of atof, a float, is converted automatically to int when it appears in a

return, since the function atoi returns an int. (The conversion of float to int
truncates any fractional part, as discussed in Chapter 2.)

As a further. example, the following program computes the average and
standard deviation of a set of one-per~line numbers. If a is the average of n

numbers x1, . . . , x,,, the standard deviation is

z<x,>1 , "’

17-"

THE C PROGRAMMING LANGUAGE CHAPTER 4

The corresponding program is -

maIn() /~ avg and standard deviation ~/
{

float atof(), val;
double dmax(), sqrt(), sum, sumsq, avg, std_dev;
char |Ine[MAXLlNE];
_int n;

sum == sumsq - n = avg — std_dev = O;
while (getline(line, MAXLINE) >= 0) {

n++;
val == atof(line);
sum +- val;
sumsq += val # val;

If (n > 0)
avg = sum / n;,

if (n > 1)
std_'dev = sqrtidmaxisumsq/(n—1) - a'vg~avg, 0.0));

printf("%d numbers: avg - %f, std dev = %f\n",
n, avg, std_dev);

Here we have to declare sqrt to be a function that returns a double. The
function dmax, which computes the maximum of two double’s or oat’s, also
has to be declared in main and written:

double dmax(x, y)
double x, y;
i

return(x > y ? x : y);
l

The second argument passed to dmax is 0.0, not 0. Since dmax expects a
double, passing it the int 0 could lead to disaster, or at least a wrong answer.

By the way, there is no entirely satisfactory way to write a function that
accepts a variable number of arguments, because there is no portable way for
the callee to determine how many arguments were actually used 1n a given call

. . . 1

Thus, you can’: write a version of dmax that will take an arbitrary number of PLIL
arguments, as will the MAX functions of Fortran and PL/I. --—--'"""'_*-"

It is generally safe to deal with a variable number of arguments if the
called function doesn’t use an argument which was not actually supplied, and if
the types are consistent. printf, the most common C function with a variable
number of arguments, uses information from the rst argument to determine
howemany other arguments are present, and what their types are. It fails badly
if the types are not what the rst argument says. Alternatively, it is possible to

CHAPTER 4 FUNCTIONS AND PROGRAM STRUCTURE 7

mark the end of the argument list in some agreed-upon way, such as an “end
of list” marker. -

4.3 Arguments — Call by Value ,
ln Chapter 1 we discussed the fact that function arguments are passed by

value, that is, the called function receives a private, temporary.copy of each
argument, not its address. This means that the function cannot alfect the ori-
ginal argument in the calling function (although if the argument was an array
name, it can certainly a'ect array elements). Thus each argument is in effect a
local variable initialized to the value the function was called with.

In Chapter 5 we will discuss the use of pointers to permit functions to
affect non-arrays in calling functions.

4.4 External Variables
Speaking formally, a C program consists of la set of external objects,

which are either functions or variables. Like functions, external variables are
“global,” that is, they are potentially accessible to any function. In this sense,
external variables are analogous to Fortran COMMON or PL/I EXTERNAL.

Because external variables are globally accessible, they provide an alter-
native to function arguments and return values for communicating data
between functions. Any function may read or write data in an external vari-
able merely by referring to it by name. For example, in the pattern-nding
example shown earlier in this chapter, we could make the line buffer and the
pattern external, and refer to them in main by including an appropriate extern
declaration, like this:

char |ine[MAXLlNE]; /~ Ilne bufferrl
char patternll = "the"; /* pattern to search for ~/

main()

l
extern char linel 1. patternl 1;

while (getline(llne, MAXLINE) >== O)

if (index(|lne, pattern) >= O)

printf("°/as\n", line);
}

There are circumstances under which the extern declaration may be omitted,
which we will discuss in a moment.

If a large number of variables must be shared among functions, external
variables are more convenient than long argument lists, and will be rather
more eicient. As pointed out in Chapter l, however, this reasoning should be
applied with some caution, for it can have a bad elfect on program structure,
and lead to program with many data connections between functions. Consider
the pattern nding program again. Making line and pattern external is reason-
able. It would be unreasonable, though, to write getline to store the input line

8 THE C PROGRAMMING LANGUAGE CHAPTER 4

in a specic external variable; an argument is more exible, since then getllne
can read into different arrays with dilferent calls. And it would be a grave
error to write Index with the names of line and pattern built in instead of
passed as arguments, since this would severely limit the utility of a general
purpose routine.

A second reason for using external variables is that there are fewer res-

trictions on how they may be initialized. In particular, automatic arrays may

not be initialized, but external ones may. In the pattern nding program, the
array pattern can be initialized by the declaration

char patternl 1 -= "the";

if it is an external variable but not if automatic. We will treat initialization
near the end of this chapter.

The third reason for using external variables is their lifetime. Automatic
variables are internal to a function; they come into existence when the routine
is entered, and disappear when it is left. External variables, on the other hand,
are permanent. They do not come and go, so they retain values from one

function invocation to the next. Thus if two functions must share some data,

yet neither calls the other, the shared data must be kept as external variables;
there is no other way for it to be both permanent and accessible.

Let us examine this issue further in the context of another example. It
is often the case that a program reading input cannot determine that it has read

enough until it has read too much. One instance is collecting the characters
that make up a name: until the rst non-alphabetic character is seen, the name
is not complete. But then the program has read a character that it is not really
ready to deal with.

Dealing with this situation can tremendously complicate a program if we

~‘~\ ‘~"5‘ ' let it. Each time we need another character, weliucg check whether to read a

new character or use the one we already have. Tarfgling this up with the logic
of what to do with each character makes an unreadable mess.

The problem would be solved if it were possible to “un-read” the
unwanted character. Then, every time the program reads one character too
many, it could push it back on the input, so the rest of the code could behave
as if it had never been read.

Fortunately, it’s easy to simulate un-getting a character, by writing a pair
of cooperating functions. getc delivers the next input character to be con-

sidered. ungetc puts a character back on the input, so that the next call to
getc will return it again.

How they work together is simple. ungetc puts the pushed-back charac-

ters into a shared buffer - a character array. geto reads from the buffer if
there is anything there; it calls getchar if the buffer is empty. There must also

be an index variable which records the position of the current character in the
buffer.

Since the buffer and the index are shared by gete and ungetc and must
retain their values between calls, they must be external to both routines. As
we saw in Chapter 1, a variable is external if it is dened outside of the body

CHAPTER 4 FUNCTIONS AND PROGRAM STRUCTURE 9

of any function. Thus we can write getc, ungetc, and their shared variables
as:

char buf[BUFSIZE]; /~ pushback buffer for getc and ungetc =~/

int bufp = -1; /~ current character position in but ~/

getc() /~= get a (possibly pushed back) character ~/
{

extern char bufl 1;

extern int bufp;

return(bufp >= 0 7 buf[bufp— -1 : getchar());
}

ungetc(c) /~ push character back on input ~/
char c;
{

extern char bufl 1;

extern int bufp;

if (bufp >= BUFSIZE)
printf("Pushback overflow\n");

else
return(buf[+ +bufp] -= c);

We have used an array for the pushback, rather than a single character, since
the generality may come in handy later.

Exercise 4-1: Write a routine ungets(s) which will push back an entire
string onto the input. Should ungets know about but and bufp, or should
it just use ungetc? El

Exercise 4-2: Suppose that there will never be more than one character of
pushback. Modify getc and ungetc accordingly. El

4.5 Scope Rules
The use of external variables raises a number of questions about scope,

that is, when variables are known to functions implicitly, and when declara-
tions are needed.

The functions and external variables that make up a C program need not
all be compiled at the same time: the source text of the program may be kept
in several les, and previously compiled routines may be loaded from libraries.
The two questions of interest are
(1) How are declarations written so that variables are properly declared dur-

ing compilation?

10 THE C PROGRAMMING LANGUAGE CHAPTER 4

(2) How are declarations set up so that all the pieces are properly connected
when the program is loaded?
C determines the scope of external variables by where they are dened

in the source le. If an external variable is declared at some point in a le,
then it may be referenced thereafter as if it had appeared in an extern declara-
tion. For example, if buf, bufp, getc, and ungetc are declared in a single le,
in the order shown above, that is,

char buf[BUFSIZE1;
int bufp = -1;

getc()

ungetc()

then there is no need for any extern declarations with getc and unqetc, and it
is common practice to omit them.

On the other hand, if an external variable is to be used before it is
dened, or if it is dened in a dlkrent le, then an extern declaration is man-
datory.

There can only be one external denition of a variable among all the les
that make up the source program; other les may contain extern declarations
to access it. (There may also be an extern declaration in the le that denes
it.) Any initialization of such a variable must go with the denition.

Thus, as an unlikely arrangement, but typical of larger programs, buf
and bufp could be dened and initialized in one le, and the functions qetc
and unqetc dened in another. Then these denitions and declarations are

necessary to tie them together:

CHAPTER 4 FUNCTIONS AND PROGRAM sraucrutua ll

In le 1:

char buf[BUFSlZEl; /~ pushback buffer for getc and ungetc ~/
int bufp = —1; I» current character position in but -/

In le 2:

extern char bufl 1;

extern int bufp;

getcl)

l

ungetc(c)
char c;
{

Because the extern declarations lie outside both getc and ungetc, they apply
to both; one declaration suices for all of le 2.

4.6 Static Variables
Static variables are a third class of storage, in addition to the extern and

auto (automatic) that we have already met.
static variables may be either internal or external. Internal static vari-

ables are local to a particular function just as auto variables are, but unlike
auto’s, they remain in existence rather than coming and going each time the
function is activated. This means that internal static variables provide private
but permanent storage in a function. Character strings declared within a func-
tion, such as the arguments of printf, are internal static.

An external static variable is known within the le in which it is
declared, but not any other le. External static provides a way to hide names
like but and bufp in the getc-ungetc combination, which must be external,
yet which should not visible to users of getc and ungetc. If the two routines
and the two variables are compiled in one le, as

12 Tl-IE c PROGRAMMING LANGUAGE CHAPTER 4

static char but[BUFSlZE]; /- pushback buffer for getc and ungetc -/
static int bufp = -1; /~ current character position in buf */

getc()

{

}

ungetc(c)
char c;
{

then no other routine will be able to access but and bufp; in fact, they will not
conict with the same names in other les.

Static storage, whether internal or external, is specied by prexing the
normal declaration with the word static:

static int ndigit[1 01;

The variable will be external or internal according to where the declaration
occurs.

As a nal note, functions may also be declared static; this makes them
inaccessible outside of the le in which they are declared.

4.7 Register Variables
The fourth and nal storage class is called register, which may be used

to advise the compiler that the variables declared will be heavily used. The
declaration is

register int x;
register char c;

and so on; the int part may be omitted.
In practice, only a few variables and only variables of certain types can

be accomodated in registers on most machines. The specic restrictions vary
from machine to machine; on the PDP-ll, three register variables are allowed;
they must be int, char, or pointer.

4.8 Block Structure
C is not a block structured language in the sense of PL/I or Algol and its

derivatives. In particular, functions may not be dened within other functions;
every function is external.

On the other hand, variables can be used in a block-structured way.
Declarations of variables may occur after any left brace, not just the one that
brackets the function. Variables declared in this way supersede any identically
named variables in outer blocks, and remain in existence until the matching
right brace.

CHAPTER 4 FUNCTIONS AND PROGRAM STRUCTURE 13

The declaration of variables in a function is one instance of this. Given
the declarations

int x;

f()
{

int x;

then within the function f, occurrences of x refer to the internal variable; out-
side of f, they refer to the external x. (Be sure that this is what you want; it
can be hard to see this kind of error if it isn’t.)

4.9 Initialization
Initialization has been mentioned in passing many times so far, but

always peripherally to some other topic. This section summarizes some of the
rules, now that we have discussed the various storage classes.

In the absence of explicit initialization, external and static variables are
initialized to zero; automatic and register variables have undened (i.e., gar-
bage) values.

Ordinary variables (not arrays) may be initialized when they are
declared, by following the name with an equals sign and a constant value:

int x = 1;
char c =- ’X’;
float twopl == 2 ~ 3141592654;

For external and static variables, the initialization is done once, conceptually at
compile time. For automatic and register variables, it is done each time the
function is entered.

For automatic and register variables, the initializer is not restricted to a
constant: it may in fact be any valid expression involving previously dened
values. For example, the initializations of the binary search program in
Chapter 3 could be written as

binary(x, v, n)
int x, v[1, n;
l

Int low = 1, high = n—1; mid;

l

instead of

14 THE c PROGRAMMING LANGUAGE CHAPTER 4

binaryix, v, n)
i{nt x, v[1. n;

int low, high, mid;

low=1;
high = n -1;

In effect, initializations of automatic variables are just shorthand for assign-
ment statements.

“Aggregates”, that is, arrays and structures, may not be initialized if
they are automatic. External and static aggregates may be initialized, by fol-
lowing the declaration by a list of initializers enclosed in braces and separated
by commas. For example, we can rewrite the character counting program of
Chapter 1 from the original

main() /* count digits, white space, others bl
{ .

int c, i, nwhite, nother, ndigit[10];

nwhite == nother == 0;
for (i == 0; i < 10; i++)

ndigitlil =- O;

to

int nwhite - 0;
int nother== O;

int ndigit[1O] =={0,0, 0,0, 0, O, 0, 0,0,0};

main() /- count digits, white space, others */
{

int c, i;

} ,

The initializations are actually unnecesary since all are zero, but it’s good form
to make them explicit anyway.

Character arrays are a special case of initialization. Since they occur so
frequently, a string may be used instead of the braces and commas notation:

char patternil - "the";

It is also true that in all cases, the compiler will ll in the length of an array if
there is a list of initializers. If there are fewer initalizers than the specied
size, the others will be zero.

cmtrren 4 FUNCTIONS AND PROGRAM STRUCTURE 15

4.10 Recursion
C functions may be used recursively; that is, a function may call itself

either directly or indirectly. One traditional example involves printing a

number as a character string. The trouble is thatthe digits are generated in the
wrong order: low-order digits are available before high-order digits, but they
have to be printed the other way around.

There are two solutions to this problem. One is to store the digits in an
array as they are generated, then print them in the reverse order, as we did in
Chapter 3 with ltoa. -

pr|ntd(n) /~ print n in decimal ~/
Int n;
{

char s[1 O1;

int i;

wm<m{
putchar('—’);
n = -n;

I = O:

do { ‘

s[i+ +1 = n % 10 + '0'; /~ convert last char to digit -/
lwhlle ((n /= 10) > 0); /~ discard last digit ~/
while (——i >== 0) '

putchar(s[i]);

The alternative is a recursive solution, in which each call of printd rst
calls itself to cope with any leading digits, then prints the trailing digit. The
resulting code:

prlntd(n) /-= print n in decimal (recursive) */
Int n;
l

int i;

nm<m{
putchar(' — ') ;.

I1 = -‘Fl;
}
If ((l — n/10) l= 0)

printd(i);
putchar(n % 10 + '0');

Recursion generally provides no saving in storage, since somewhere a
stack of the values being processed has to be maintained, nor will it be faster.

16 THE C PROGRAMMING LANGUAGE CHAPTER 4

But recursive code is more compact, and often easier to write and understand.
Recursion is especially convenient for recursively dened data structures like
trees; we will see a nice example in Chapter 6.

Exercise 4-3: Adapt the ideas of printd to write a recursive version of itoa;
that is, convert an integer into a string with a recursive routine. El

Exercise 4-4: Write recursive and non-recursive versions of the function
reverse(s), which reverses the string s. El

4.11 The C Preprocessor
C provides certain language extensionss by means of a preprocessor

which is actually a rather simple macro processor. The #define capability
which we have used is the most common of these extensions. The other
aspect of the c preprocessor is the ability to include during compilation the con-
tents of other les.

#lnclude
To facilitate handling large collections of declarations (among other

things) C provides a le inclusion feature. Any line that begins with

#include "lename"

is replaced by the contents of the le lename. Commonly a line or two of this
form appears at the beginning of a le, to include common #deflne statements
and extern declarations for global variables.

#include is denitely the preferred way to tie the declarations together
for a large program. It pretty well guarantees that all the source les will be
supplied with the same version of denitions and variable declarations, and
thus eliminates a particularly nasty kind of bug.

Macros
A denition of the form

#define YES 1

calls for a macro substitution of the simplest kind — replacing one xed string
by another. It is possible, however, to specify a macro with arguments, so the
replacement text depends on the way the macro is called. As an example, we
could dene a macro called max like this:

#deflne max(a, b) ((a > b) ? a : b)

Then a line in a program like

x - max(p+q, r+s);

will be replaced by the text

x = ((p+q > r+s) ? p+q : r+s):

This provides a maximum “function” that expands into in-line code rather
than a function call. So long as the arguments are treated consistently, this

CHAPTER 4 FUNCTIONS AND PROGRAM STRUCTURE 17

macro will serve for any data type; there is no need for max and dmax, as

there would be with functions.
Of course, if you examine the expansion of max above, you will notice

some pitfalls. The expressions are evaluated twice; this is bad if they involve
side effects. Some care has to be taken with parentheses to make sure the
order of evaluation is preserved. And there are even some purely lexical prob-
lems: there can be no space between the macro name and the left parenthesis
that introduces its argument list.

Nonetheless, macros are quite valuable. One practical example is the
standard I/O library to be described in Chapter 7, in which commonly used
functions like qetchar and putchar are dened as macros (obviously putehar
needs an argument), thus avoiding the overhead of a function call per charac-
ter processed.

Exercise 4-5: Write macros for the functions lower and upper discussed in
Chapter 2. E1

Exercise 4-6: Write macros for etc and ungetc from this chapter. E1

1 . ‘

. .» A1

~ 4. ,

CHAPTER 5: POINTERS AND ARRAYS

A pointer is a variable that contains the address of another object.
Pointers are very much used in C, partly because they are sometimes the only
way to express some computation, and partly because they usually lead to more
compact and eicient code than can be obtained in other ways._¢

~ Pointers have been lumped with the goto statement as a marvelous way
to create impossible-to-understand programs. This is certainly true for careless
programming, and it is easy to create pointers that point somewhereiunex-
pected. With discipline, however, pointers can also be used to achieve clarity
and simplicity. This is the aspect that we will try to illustrate.

5.1 Pointers and Addresses T‘ -

Since a pointer contains the address of an object,4‘it‘is‘po‘ssible to access
the object “indirectly” through the pointer. Suppose that x is a variable, say
an int, and that px is a pointer, created in some as yet unspecied way. Then
the variable px’ can be set to the address of x by the assignment

px = &x;

The unary operator & gives the address of an object (it can be applied only to
variables and functions; constructs like &(x+1) and &3 are illegal). So now
px contains the address of x.

The unary operator # is the inverse of 8.; it treats its operand as a vari-
able that contains the address of the ultimate target, and accesses indirectly
through that address to fetch the contents. Thus if y is also an int,

by = rpx;
.

assigns to y the contents of whatever px points to. So the sequence

px = &x;
Y = ‘OX;

is equivalent to

Y = X2

It is also necessary to declare the variables participating in all of this:

l

2 THE C PROGRAMMING LANGUAGE CHAPTER S

int x, y;
int 1-px;

The declaration of x and y is what we’ve seen all along. The declaration of the
pointer px is new.

int rpx;

is intended as a mnemonic; it says that the combination *px is an int, that is, if
px occurs in the context -Ipx, it is equivalent to a variable of type int. This
reasoning is useful in all cases involving complicated declarations. It is quite
analogous to a declaration like

float atofl);

which says that atof() is an object of type float.
You should also note the implication in the declaration that a pointer is

constrained to point to a particular kind of object. It is fraught with peril to
declare a variable to be a pointer to one type, then use it as a pointer to
another.

Pointers can occur in expressions. For example, if px points to the
integer x, then *px can occur in any context where x could.

y -= *px + 1

sets y to l more than x;

printf("%d\n", ~px);

prints the current value of x; and

d == sqrtl (double) *px);

produces in d the square root of x, which has to be coerced into a double
before being passed to sqrt.

In expressions like

y==~px+1 '

* and 8t bind more tightly than arithmetic operators, so this adds 1 to whatever
px points at, and assigns it to y. We will return shortly to the meaning of

y =- ~(px+1)

Pointer references can also occur on the left side of assignments.

'pX = 0:

sets x zero, and

apx +— 1

increments it, as does

(~px)++ V r

The parentheses are necessary here; without them, the expression would

cnxrran s romrans AND ARRAYS 3

increment px instead of what it points to, because unary operators like # and
+ + are evaluated right to left.

Finally, since pointers are variables, they can be manipulated as other
variables can. If py is another pointer to int, then

DY = PX

has the obvious meaning of making py point to whatever px points to.

5.2 Pointers and Function Arguments
Since C passes arguments to functions by “call by value”, there is no

direct way for the called function to alter a variable in the calling function.
What do you do if you really have to change an ordinary argument? For
example, a sorting routine might exchange two out-of-order elements with a

function called swap. It is not enough to write

swap(x, y) /~ WRONG -v/

int x, y;
{

int temp;

temp = x;

X '= Y;
y = temp;

1

because swap can ‘r affect the arguments x and y. Fortunately, pointers pro-
vide a way to obtain the desired effect. In the calling program, pass not the
argument but a pointer to it:

swaplaa. ab);

Since the operator & gives the address of a variable, &a is a pointer to a.

In swap itself, declare the arguments to be pointers, and treat them as

such:

swaplpx, py) /~. interchange -px with *py ~/

mt ‘PX, ‘DY;
{

int temp;

temp - 1-px;

*DX * ‘DY;
‘DY =' lmp;

l

One common use of pointer arguments is in functions that must return
more than a single value. (You might say that swap returns two values, the
new values of its arguments.) As an example, a function which reads input and

4 THE C PROGRAMMING LANGUAGE CHAPTER 5

converts it to a stream of integersrhas to return the value it found, and also
some indication of whether or not end of le has occurred. And these values
have to be returned in different places, for no matter what value is used for
EOF, that could also be some legitimateinteger from the input.

One solution, which is based on the input function scanf that we will
talk about in Chapter 7, is to write a function getint which returns 1 if it really
found a number, .0 if it found no number, and -1 if itfound end of le.. The
actual numeric value is returned in the argument, which then must be a
pointer to an integer. In this way end of le and error signals can be dis-
tinguished from legal numeric values.

The call

int n, stat;

stat = getint(&n); ‘

sets n to the next integer found in the input and stat to the status returned by
getint.

getint(pn) /~ get next integer from input ~/
int apn;
{

int c, sign = 1;

while ((0 = getchar()) === " ll c =- '\n' ll c == ’\t')
; /~ skip white space ~=/

if (c == '+' n c === '—'){ /= sign »~/

sign == (c=='+')? 1 : -1;
c = getchar();

for (*pn = 0; c >- '0’ && c <- '9’; c = getchar()) /~= integer part ~/
*pn =s 10 * ~pn + c — '0';

~pn ~= sign;
if (c == ' ' ll C == '\n' ll c == ’\t')

return(1); /~ normal integer found ~/
else if (c === EOF)

return(-1);
else

return(O); /1 some error 1/
} .

Throughout getint, apn is used as an ordinary int variable.
Exercise 5-1: Write getfloat, the oating point analog of getint. What type
does getoat return as its function value? El

CHAPTER 5 POINTERS AND ARRAYS 5

5.3 Pointers and Arrays -

There is a strong relationship between pointers and arrays, strong
enough that pointers and arrays really should be treated simultaneously. Any
operation which can be achieved by array subscripting can also be done with
pointers. The pointer version will in general be rather more eicient but, at
least to the uninitiated, somewhat harder to grasp immediately.

The declaration

int a[1Ol

denes an array a ofsize 10, that is a block of 10 consecutiveobjects named
a[O], a[1], ..., a[9]. The notation a{i] means the i-th element of the array, that
is, i positions from the beginning. If pa is a pointer to int, declared as

int -pa

then the assignment

pa = &a[0l i

sets pa to point to the zeroth element of a. Now the assignment

x = ~pa

copies a[0] into x.
if pa points to a particular element of the array a, then by denition

pa + 1 points to the next element, and in general pa :t i points i elements
before or after pa. Thus, if pa points to a[0],

*(pa+1)

refers to the contents of a[1], and pa + I is the address of alil.
The denition of “adding 1 to a pointer,” and by extension, all pointer

arithmetic, is that the increment is scaled by the size in storage of the object
that is pointed to. This makes the correspondence between indexing and
pointer arithmetic very close.

In fact, the association is even closer. Again by denition, a reference to
an array of a particular type is converted by the compiler to a pointer to the
beginning of the array. In effect, an array name is a pointer expression. This
has quite a few useful implications.

Since the name of an array is a synonym for the location of the zeroth
element, the assignment

pa = &a[Ol

can also be written as

pa = a

The array name a, being of type “array”, is a pointer expression, and can be
assigned to a pointer of the same type.

Rather more surprising, at least at rst sight, is the fact that a reference
to a[i] can also be written as *(a+i). By denition, in evaluating all], C

6 THE C PROGRAMMING LANGUAGE CHAPTER 5

converts it to ~(a+i) immediately; the two forms are identical. Applying the
opera-tor & to both parts of this equivalence, it follows that &a[l] and a+i are
also identical. a+i is the address of an object i elements beyond a.

There is one difference between an array name and a pointer that should
be kept in mind. A pointer is a variable, so pa=0 or pa++ make perfect
sense. But an array name is a name, not a variable: constructions like a==0 or
a + + are illegal.

There is an exception to this rule, an important one. Within a function,
C interprets arguments which are declared “array of ...” as actually being
“pointer to ...”, so that either subscripting or indexing can be used. When an
array name is passed to a function, the function can at its convenience believe
that it has been handed either an array or a pointer, and manipulate it accord-
ingly. It can even use both kinds of operations if it seems appropriate and
clear.

As a consequence of this conversion from array to pointer, it is possible
to pass a part of an array to a function. For example,

f(&a[2l)

and

f(a+ 2)

both pass to the function f the address of element a[2]. Within f, the declara-
tion can read

f(arr)
i{nt arrl 1;

}

01'

f(arr)
fnt ~arr;

l

So as far as f is concerned, the argument either an array or a pointer, and the
fact that it is really part of a larger array is of no consequence.

CHAPTER 5 POINTERS AND ARRAYS 7

5.4 Address Arithmetic
We have seen that p+ + increments p by 1 to point to the next element

of whatever kind of object p points to, and p + == i increments p to point I ele-
ments beyond where it currently does. These and similar constructions are
among the simplest and most common forms of pointer or address arithmetic;
many others are also possible.

C is quite consistent and regular in its approach to address arithmetic.
To illustrate some of its properties, let us build a rudimentary storage allocator
(but useful in spite of its simplicity). There are two routines. a|loc(n) returns
a pointer to n consecutive character positions, which can be used by the
receiver of the pointer for storing any characters it likes. free(D) releases the
storage thus acquired so it can be later re-used. The routines are “rudimen-
tary” because the calls to free must be made in the opposite order to the calls
made on alloc. That is, the storage managed by alloc and free is a stack, or
last-in, rst-out queue. The standard C library provides an alloc and free
which have no such restrictions. In the meantime, many applications really
only need a trivial alloc to hand out little pieces of storage of unpredictable
sizes at unpredictable times.

The simplest implementation is to have alloc and free hand out pieces
of a large character array which we will call a|loc_buf. This array is private to
alloc and free; since they deal in pointers, not array indices, no other routine
need know the name of the array, which can be declared external static. In
fact, in practical implementations, the array may well not even have a name;
rather it might be obtained by asking the operating system for a pointer to
some unnamed free storage. (This is one place where pointers can serve and
array indices can’t.)

The other piece of data needed is some record of how much of
alloc_buf has been used. A pointer to the next free element is convenient; we
will call it alloc_p.

When alloc is asked for n bytes, it checks to see if there is enough
room, and if so returns the current value of alloc_p, then increments it by n.
free(p) merely sets alloc_p to p after a bit of error checking.

8 THE C PROGRAMMING LANGUAGE CHAPTER 5

#detlne NULL 0 /~ illegal pointer value tor error reporting ~/

#define ALLOC 1000 /- size of available space ~/

static char alloc_bui[ALLOC1; /~ storage for alloc and free -/
static char *alloc_p = aiioc_buf; /~ next free position -/

char *alloc(n) /~ return pointer to n bytes -=/

int n;
l

if (alloc_p + n <= aiioc_buf + ALLOC) /* it fits ~/
return((alloc_p += n) — nl;

else /- not enough room ~/
return(NULL);

l

free(D) /=~ free storage for alloc ~/
char -p; ~

l
if (p >= aiioc_buf && p < aiioc_buf + ALLOC)

alloc_p = p;
. } _

Some explanations. In general a pointer can be initialized just as any
other variable, though normally the only meaningful values are NULL or some
expression involving previously dened pointers of the same type. The state-

ment

static char *alloc_p = aiioc_buf; /* next free position =~/

denes alloc_p to be a character pointer and initializes it to point to aiioc_buf,
which is the next free position when the program starts. This could have also

been written

char ‘alloc_p = &alloc_buf[0]; *

but since the array name is the address of the zeroth element, it’s redundant to
do so.

The test

if (alloc_p + n < = aiioc_buf + ALLOC) /* it fits */

checks if there’s enough room to satisfy this request. If there is, the new
value of alloc_p would be at most one beyond the end of aiioc_buf. If the
request can be satised, alloc returns a normal pointer (notice the declaration
of the function itself). If not, alloc must return some signal that an error has

happened. C guarantees that a pointer that really points at data will never be

zero, so returning zero signals some abnormal event, in this case, no space.

We write NULL instead of zero, however, to indicate more clearly that this is a

special value for a pointer.

CHAPTER S POINTERS AND ARRAYS 9

Tests like

if (alloc_p + n <- al|oc_buf + ALLOC) /~ it fits */
and

if (p >-= alloc_buf && p < alloc_buf + ALLOC)

also show several important facets of pointer arithmetic. First, a pointer and
an integer‘ may be added or subtracted. The construction

p + n '

means the nth object beyond the one p currently points to. This is true
regardless of the kind of object p is declared to point at; n is scaled as neces-
sary to make it work.

As a corollary, pointer subtraction is valid: if p and q point to members
of the same array, p—q is an integer equal to the number of elements between
p and q (plus 1). This fact can be used to write a very eicient pointer version
of the function strlen, which computes the length of a character string. t

strlenls) /~ length of s ~/
char *s; ’ A

l
char ap = s;

while ('0)
0+ +:

return(D— s):

As formal parameters in a function denition,

char sl 1;

and

char ~s;

are exactly equivalent; which one to write is determined largely by how expres-
sions will be written in the function. a.

p is initialized to s, that is, to point to the rst character. In the while
loop, each character in turn is examined until the \O at the end is seen. Since
\0 is zero, and since whlle tests only whether the expression is zero, we have
omitted the explicit test. It could be written as

Y

while (~p l== '\0')

Since p points to characters, p+ + advances p to the next character each
time, and p-—s gives the number of characters advanced over, that is, the
string length. Pointer arithmetic is consistent: if we had been dealing with
float’s, which occupy more storage than char’s, and if p were a pointer to
float, p++ would still advance to the next oat.

10 rue c PROGRAMMING LANGUAGE cnarrea s

You might nd it instructive to compare this to the version in Chapter 2.

The second aspect of pointer arithmetic is that pointers may be compared
under certain circumstances. Again, if p and q point to members of the same

array, then relations like <, > =, etc., work properly.

P<Q
is true, for example, if p points to an earlier member of the array than does q.
The relations == and l-= also work. Any pointer can be meaningfully com-
pared for equality or inequality with NULL. Other comparisons may not do
what you expect, however. For instance, the innocent-looking code

int ~p;

0 = 1:
if (p =-=- 1)

printf("hello\n");

will never print “hello” because the 1 in p===1 is scaled to int before the
comparison, and thus isn’t 1 any more.

All bets are o‘ if you do arithmetic or comparisons with pointers point-
ing to different arrays. The best that will happen is that your code will work on
one machine but collapse mysteriously on another. The worst is that you’ll get
nonsense on all machines.

All of these considerations mean that we could write another version of
alloc which maintains, let us say, float’s instead of char’s, merely by changing
the declaration

char ~alloc(n)

to

float ~alloc(n)

Since all the pointer manipulations automatically take into account the size of
the object pointed to, no other parts of alloc and free have to be altered.

5.5 Character Pointers and Functions
By denition, a “string constant”, written as

"I am a string

is an array of characters. The compiler terminates the array with the character
\O so that programs can nd the end.

Although a variable may not hold a string, it may hold a pointer to one,
as in the sequence

CHAPTER s POINTERS AND ARRAYS 11

char message;

message -= "now ls the time";

This assigns the pointer to the string to message, which can be manipulated
as desired. Note that this is not a string copy; only pointers are involved. C
does not provide any operators for processing character strings as a unit.

Since one of the most common uses of pointers is accessing character
arrays, we will illustrate some aspects of pointers and arrays by studying three
useful functions from the standard I/O library to be discussed in Chapter 7.

The rst function is slr0py(s, I), which copies the string t to the string s.
The arguments are written in this order by analogy to assignment, where one
would say

s == t;

to assign t to s. The array version is reminiscent of strlenz

strcDY(s, t) /~ copy t to s ~/
char sl 1. tl 1:

{

int i;

i = O;

while (slil = tlll)
i++;

For contrast, here is a rst version of strcpy with pointers.

strcDY(s, t) /* copy t to s */
char *s, ~t;

{

while (*s = ~t) {

s++; i

i++;
}

l

Because arguments are passed by value, strcpy can use s and t in any way it
pleases. Here they are conveniently initialized pointers, which are marched
along the arrays a character at a time.

In practice, strcpy would not be written as we showed it above; it would
almost certainly be

12 THE C PROGRAMMING LANGUAGE CHAPTER 5

strcpy(s, t) /* copy t to s -/
char ~s, *t;
{

while (=~s++ == *t++)

}

-t+ + is a two step operation, with a sidepeffect. Unary operators like ~

and + + operate right to left. Thus in a combination like

*H-+

the ++ operator is done rst; this produces the value of t, and has the side
qect of incrementing t. Then ‘the ~ is applied to the old value of t to access
the character t pointed to. In the same manner, this character is assigned to
the old position that s pointed to and s is incremented. Finally, the value of
the assignment statement, the original character that t pointed to, is used: the
character is tested to determine whether theiloop should go around again.
When the \O has been safely copied over, the loop will terminate.

Although this may seem unduly complicated, the notational convenience
is considerable, and the idiom should be mastered.

t

The second function is strcat(s, t), which concatenates the string t to the
end of s. strcat assumes that s is large enough to hold the combination; if
this is not the case, it is possible to use alloc to assign new space for the
created string. First, strcat with conventional array indexing, as in Chapter 2.

strcat(s. t) /* concatenate t to end of s »/
char sl 1. tl 1;

l
int i, I;

while (s[i]) /~ find end of s */
i+ +;

while (s[i++] - t[j+ +1) /- copy t ~/

} t

Note the postx + + to increment l and j so they are always ready for the next
character.

Now here is strcat with pointers.

CHAPTER 5 POINTERS AND ARRAYS 13

strcat(s, t) /~ concatenate t to end of s */
char *s, *t;
{

char *p;

D = $1

while (*9) /* find end of s ~/

9+ +;
while (*p++ = -t++) /~ copy t 1/

}

p starts at the rst character of s. Each time p is incremented (D++) it
moves one character along the array, and eventually reaches the \O that ter-
minates s. From that point, characters of t are copied, including the \0 that
terminates t. The construction

while (*p++ = ¢t++)

is identical to that explained with strcpy above.

The nal routine is strcmp(s, t), which compares si to t, and returns
negative, zero or positive according as s is less than, equal to, or greater than
t. Both s and t are character strings.

strcmp(s, t) /~ return <0 if s<t, =0 if s==t, >0 if s>t */
char s[1.t[1;
{ .

int i;

i = O;

while (s[ii == till)
if (S[i+ +1 ="= ’\O’)

return(0);
return(s[i] — tlil);

The pointer version of strcmp is not as close a parallel as our previous exam-
pies.

strcmp(s, t) /* returns <0 if s<t, O if s==t, >0 if s>t */
char ws, =-t;

l
while (*8 == *f++)

if (*s++ ==== ’\O’)
return(0);

return(~s — ~(t-1));

By the time it is found that the strings differ at some point, t has been

14 THE c PROGRAMMING LANGUAGE CHAPTER 5

incremented one position too far. To access the previous character, that is, the
one before where t currently points, we need

*(t — 1)

Accordingly, the return statement is

return(*s — ~(t—1));

Since + + and —— can occur as either prex or postx operators, other
combinations of * and ++ and —— occur, although less frequently. For
example,

*+ + p

increments p before fetching the character that p points to;

~——n

decrements rst. This means that we could have written the last return state-
ment in strcmp as

return(~s — *——t);

Exercise 5-2: Write the function strcat with a call to alloc to allocate
enough space for the created string. What value should strcat retum, if
any? El

5.6 Pointer Copying
You may notice in older C programs a rather cavalier attitude toward

pointer copying. It has generally been true that in C a pointer may be assigned
to an integer and back again without changing it. This has led to the taking of
liberties with routines that return pointers which are then merely passed to
other routines — the requisite pointer declarations are often left out. For
example, in

if (strcmp(strcat(P, q). strcat(s. t)) ==== 0)

there would be a strong tendency not to bother declaring that strcat returns a
character pointer. In fact, street itself would probably not be declared as
returning a character pointer.

This kind of code is inherently risky, for it depends on details of imple-
mentation and machine architecture which may well not hold for the particular
compiler you use. It’s wiser to be complete in all declarations.

CHAPTER S POINTERS AND ARRAYS 15

5.7 Two-Dimensional Arrays
Consider the problem of date conversion, from day of the month to day

of the year and vice versa. These computations, which would presumably be
done by two separate functions, both need the same information, a table of the
number of days in each month (“thirty days hath September ...”). Since the
number of days per month differs for leap years and non-leap years, it’s easiest
to separate them into two rows of a two-dimensional table, rather than try to
keep track of what happens to February during computation. The table must
be shared between two routines: day_of_year, which converts the month and
day into the day of the year, and month_day, which converts the day of the
year into the month and day. The table and the functions for performing the
transformations are as follows:

static int day_tab[2][13] ={
(O, 31, 28, 31, 30, 31, 30, 31, 31, 30,31, 30, 31},
{O, 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31}

};

day_of_year(year, month, day)
int year, month, day;
l

int l, leap;

leap = (year°/@400 === 0) ll (year%100 != 0 && year%4 == O);
for (i =- 1; i < month; i++)

day += day_tab[leapl[i];
returniday);

}

month_day(year, yearday, month, day)
int year, yearday, rmonth, ~day;
i

int i, leap;

leap = (year%4O0 == 0) ll (year%10O != O && year%4 == 0);
for (i = 1; yearday > day_tab[leaD][i]; i++)

yearday —-= day_tab[leapl[i];
~month = i;
*day = yearday;

The table day_tab has to be external to both day_of_year and month_day.
Since its denition precedes them both, no extern declarations are needed.
And since month_day has to return a pair of values, it does so by assuming it
has been called with two pointers.

The table day_tab is the rst two-dimensional array we have dealt with.
A two-dimensional array is really a one-dimensional array, each of whose

16 THE C PROGRAMMING LANGUAGE CHAPTER S

elements is an array. Hence subscripts are written as

day_tab[i][jl

rather than

day_tab[i, ll
as in most languages. Other than this, a two-dimensional array can be treated
in much the same way as in other languages. Elements are stored by rows.

The array is initialized by a list of initializers in braces; each row is ini-
tialized by the corresponding list. We started the array with a column of zero
so that month numbers can run from the intuitively natural 1 to 12 instead of
0 to ll. Since space is certainly not at a premium here, this is easier than
mentally adjusting indices.

5.8 Pointer Arrays; Pointers to Pointers
Since pointers are variables themselves, you might reasonably expect

that there would be a need for arrays of pointers. This is indeed the case. We
have already seen a limited example, although we didn’t stress it. A two-
dimensional array like

int day_tab[2]l13]

is actually a one-dimensional array day_tabl2l with two elements, each of
which is a one-dimensional array of 13 elements. And since we have been say-
ing that pointers and arrays are really much the same thing, this means that
day_tab can be considered an array of two pointers to integers, or a pointer to
a pointer to integers.

Let us illustrate this further with a rather larger program than most we
have written so far. The task is to write a program that will sort a set of text
lines into alphabetic order, a stripped-down version of the Unix utility sort.

In Chapter 3 we presented a Shell sort function that would sort an array
of integers. The same algorithm will work, except that now we have to deal
with lines of text, which are of different sizes, and certainly can’t be compared
or moved in a single operation as can integers. What data representation will
cope efciently and conveniently with variable-length text lines?

This is where the array of pointers enters. If we store the lines to be
sorted end to end in one long character array (maintained by alloc, perhaps)
then we can refer to each line by a pointer to its rst character. The pointers
themselves can be stored in an array. Now when two out-of-order lines are to
be exchanged, the pointers in the pointer array are exchanged, not the text lines
themselves. This eliminates the twin problems of complicated storage manage-
ment and high overhead that would be part of moving the actual lines.

The sorting process involves three steps:

CHAPTER s POINTERS AND ARRAYS 17

read all the lines of input
sort them
print them in order

As usual, it’s best to divide the program into functions that match this natural
division, with the main routine controlling things.

Let us defer the sorting step for a moment, and concentrate on the data

structure and the input and output. The main item of data structure needed is

an array to hold the pointers to the lines as they are read in, and a line count
for sorting. The input routine has to collect the lines, ll this pointer array,

and count the input lines. Since the input function can only cope with a nite
number of input lines, it can return some illegal line count like -1 to signal an

input overow. The output routine only has to print the lines in the order in
which they appear in the array of pointers.

Here is the bulk of the code.

#define NULL 0
#define LlNES100 /~ maximum lines to be sorted */
#dene MAXLINE 200 /~ longest line to handled */

main() /~ sort input lines */
{

char ~lineptr[LlNES]; /- pointers to text lines */
int nlines; /~ number of input lines read -/

if ((nllnes == readlInes(llneptr)) >= 0) {

sortilineptr, nllnes);
writelinesineptr, nlines);

}

else
printf("input too big to sort\n"); ‘

i

18 THE c PROGRAMMING LANGUAGE CHAPTER s

readlInes(lineptr) /* read input lines for sorting */
char ~ll'neptr[1; ‘

{

int n, nlines;
char sp, =~alloc(), line[MAXL|NE];

nlines = O;

while ((n - getllne(line, MAXLlNE)) >= O)

it (nlines >= LINES)
return(—1);

else if ((0 = alloc(n+1)) == NULL)
return(—1);

else {

strcpy(p, llne);
lineptr[nlines+ +1 = p;

return(nlines);
}

writelines(lineptr, nlines) /~ write output lines */
char »lineptr[1;

int nlines;
l

int i;

for (i == O; i < nlines; l++)
printf("%s\n", lineptrlil);

The main new thing is the declaration for llneptr,

char *lineptr[LlNES]; /* pointers to text lines ~/ V

which says that lineptr is an array of LINES elements, each a pointer to char.
That is, lineptr[i] is a character pointer, and alineptrlll accesses a character.

main includes the call to sort, but we actually wrote the program origi-
nally without any sort, just readllnes and writelines, to make sure that we
could copy lines from input to output intact, and that the error-detecting parts
worked properly. With that all checked out, we could then concentrate on the
sorting. Writing a program in small steps - “incremental construction,” if
you like — is a good approach: when a program falls apart during development,
it is almost certainly related to the most recent thing you added. Knowing that
much makes it a lot easier to nd the trouble.

Now we can proceed to sorting. The Shell sort from Chapter 3 needs
only minor changes, mainly new declarations, and separation of the com-
parison operation into a separate function.

CHAPTER 5 POINTERS AND ARRAYS 19

sort(v, n) /~ sort v[O] v[n-1] into increasing order ~/
char rvl 1;

int n;
l

W 980. i. I;
char *k;

tor (gap = n/2; gap > 0; gap /= 2)
for (i = gap; i < n; i++)

for (j =- i—gap;j >= 0;} —= gaD){
if (strcmp(vIj], v[j+gapl) <= O)

break;
k = vlil;
vljl = v[j+gaDl;
v[i+gap] = k;

}

The declaration of k is

char sk

Since any individual element of v (alias lineptr) is a character pointer, k
should be the same so one can be copied to the other.

We also wrote the program about as straightforwardly as possible, so as

to get it working quickly. It is quite likely that the sort could be faster if, for
instance, we copied the incoming lines directly into an array maintained by
readlines, rather than copying them into line and then to a hidden place

maintained by alloc. But it’s wiser to make the rst draft something easy to
understand; worry about “eiciency” later. The way to make this program
signicantly faster is probably not by avoiding an unnecessary copy of the input
lines. Replacing the Shell sort by something better, like Quicksort, is more
likely to make a difference.

Initialization of an array of pointers is straighforward; again, all that is

needed is a list of initializers enclosed in braces. One of the most common ini-
tializers is a set of character strings, as in this routine to print error messages:

20 THE c PROGRAMMING LANGUAGE CHAPTER s

char ~=ms9ll =-={

"too bad",
"tough luck",
"it's all over",
"so long"

l;

print_msg(n)
int n;
l \

prlntf("error: %s\n", msglnlli

The compiler supplies the proper count for the array by counting the initializ-
ers.

Exercise 5-3: Rewrite the routines day_of_year and month_day with
pointers instead of indexing. El

5.9 Command Arguments
In most environments that support C, there is a way to specify argu-

ments or parameters to be passed to the program when it begins executing.
These arguments are available to the function main (if the program wishes to
do anything with them) as an argument count argc and an array of character
strings argv containing the arguments. Manipulating these character string
arguments is one of the more common uses of multiple levels of pointers.

As the simplest illustration of the necessary declarations and use, here is
a program that simply echoes its arguments. By convention, argc is greater
than zero; the rst argument (argc-1) in argv[O] is the command name
itself.

malnlargc, argv) /* echo arguments; 1st version -/
int argc;
char ~argv[1;

l
int l;

for (i == 1;i < argc; I++)"
printf("%s°/as", argvlll, (i < argc—1) ? " " : "\n");

Since the zeroth argument is the command name, we start with the rst argu-
ment, argvh]. When printed, each argument is a character string in exactly
the same way as the lines of text were in the sort‘ program. Each argument
except the last is followed by a blank.

Since argv is an array of pointers, there are several different ways to
write this program. Let us show two others.

CHAPTER s POINTERS AND ARRAYS 21

mainlargc, argv) /* echo arguments; 2nd version -/
int argc;
char 1-argvl 1;

{
while (—--argc > O)

Dl’il‘1"("°/08°/08", ~++argv, large > 1) 7 " " : "\n");

Each time the pointer argv is incremented, one more argument is dropped
from the “bottom” of the list. At the same time argc is decremented; when it
becomes zero, there are no arguments left to print.

Alternatively

mainlarge, argv) /~= echo arguments; 3rd version ~/
int argc;
char wargvl 1;

{

while (——argc > O)

prlntf((argc > 1) ? "°/08 " : ”%s\n", -++argv);
i

This version shows that the format argument of printf can be an expression
just like any of the others. This usage is not very frequent, but worth
remembering.

As a larger example, let us make some enhancements to the pattern-
nding program we wrote in Chapter 4. If you recall, we wired the search pat-
tern deep into the program, an obviously unsatisfactory arrangement. Follow-
ing the lead of the Unix program grep, let us redesign so the pattern to be
searched for is specied by the rst argumentson the command line.

#define MAXLINE 1000

mainiargc, argv) /* search for pattern from first argument ~/
int argc;
char -argvl 1;

char llne[MAXLlNEl;'

while (getlinelline, MAXLINE) >= 0)
if (lndexlline, arqv[1]) >== 0)

printf("%s\n", line);

The basic model can now be elaborated to illustrate further pointer con-
structions. Suppose we want two optional arguments. One says “print all but
the lines that match the pattern;” the second says “precede each printed line
with its line number.”

22 THE c PROGRAMMING LANGUAGE CHAPTER s

A common convention for C programs is that an argument beginning
with a minus sign ‘-’ introduces an optional ag or parameter. If we choose
—a (for “all but”) to signal the inversion, and —n (“number”) line number-
ing, then the command

find —a —n the

with the input

now is the time
forall good men
to come to the aid
of their party.

should produce the output

2:for all good men

Ideally the implementation of the optional arguments should be such
that the rest of the program is relatively insensitive to the details of the argu-
ments which were actually present. In particular, we don’t want the call to
index to refer to argv[2] when there was a ag argument and to argv[1] when
there wasn’t.

To achieve this requires us to treat argv itself as a pointer which can be
incremented.

CHAPTER 5 POINTERS AND ARRAYS 23

#define MAXLINE 1000

main(argc, argv) /~ search for pattern ~/
int argc;
char vargvl 1;

{

char |lne[MAXLINE];
int allbut == 0, number = 0, n = O;

while (argc > 1 && argv[1][O1 === '-') i
switch (argv[1][1]) i

case 'a': allbut = 1; break;
case 'n': number - 1; break;

argc——;
argv++;

l
whlle (getlinelllne, MAXLINE) >= O) {

n+ +;
if ((index(line, argv[1l) >= 0) != allbut) {

if (number)
printf("%d:", n);

printf("%s\n", line);

}

}

argv is incremented if an optional argument is found. Since argv is a pointer
to the beginning of the array of argument strings, incrementing it by 1 makes it
point at the original argv[1] instead of argv[0l as it used to. At the same time
we decrement argc in case anything further on in the program depends on
that. (It doesn’t in this case.) We also mentioned earlier that a function could
treat arguments as either arrays or pointers, or even both; this example illus-
trates that.

Exercise 5-4: Write the program tail the last n lines of its
input. By default, n is 10, let us say, ut it can be changed by an optional
argument, so that

tail — n

prints the last n lines, for all reasonable n. Write the program so it makes
the best use of available storage. El

24 THE c PROGRAMMING LANGUAGE CHAPTER -s

5.10 Pointers to Functions
We said earlier that the operator & can be applied to functions, which

implies that a pointer to a mcrion is a legitimate object. In C, a function itself
is not a variable, but it is quite possible to dene a pointer to a function, which
can be manipulated, passed to functions, and so on. This gives essentially the
same capabilities as would be possible if functions were variables, but is much
simpler to deal with.

Let us illustrate the use of pointers_ to functions, by modifying the sort-
ing procedure that we wrote earlier in this chapter. A sort consists generally of
three steps — a comparison which determines the ordering of any pair of
objects, an exchange which reverses their order, and a sorting algorithm which
makes comparisons and exchanges until the objects are in order.

If we use different comparison and exchange functions, we can sort
objects any way we please. The sorting algorithm is independent of the com-
parison and exchange operations, so it need not change.

Let us modify the previous sorting program so the comparison and
exchange functions are passed to sort as pointers to functions. sort in turn
will call the functions via the pointers. First, the main routine needs to declare
the functions strcmp and swap (a new routine), and pointers to them must be

passedto sort:

#deflne NULL O

#define LINES 1 00 /~ maximum llnes to be sorted ~/

#deflne MAXLINE 200 /* longest line to handled ~/

main() /~ sort input lines ~/

l
. char ~lineptr[LINES]; /* pointers to text lines ~/

int nlines; /~ number of Input llnes read ~=/

int strcmp(). swap(); /~ comparison and exchange functions ~/

if (lnlines =-= readlines(llneptr)) >- O) {

sortllineptr, nllnes, &strcmp, &swap);
writelineslllneptr, nllnes);

l
else

prlntf("lnput too big to sort\n");
l

&strcmp and &swap are pointers to the functions; in fact, since they are

known to be functions, the 8r is unnecessary.
The second step is to modify sort:

CHAPTER s POINTERS AND ARRAYS 25

sort(v, n, comp, exch) /' sort v[0] v[n—1] into increasing order */
char ~v[1;

int n;
i{nt (*comD)(). (*exch)();

Int can. I. 1:

for (gap = n/2; gap > 0; gap /= 2)
fOf (i = 9891 i < n; i++)

for (i == i~oan;l >= 0:1-= 9ar>){
if ((*comn)(vlil. vli+qar>1) <= 0)

break;
(*exch)(&vU]. &V[i+QaD]);

}

The declarations should be studied with some care.

int (*comp)()

says that the object in question is a pointer to a function that returns an int.
Without the rst set of parentheses,

Int ~comp()

would say that comp was a function returning a pointer to an int, which is

quite a different thing. t

The use of the comparison function in the line

if ((*comp)(v[]], v[j+gap]) <= 0)

is the consistent with the declaration: *comp is a pointer to a function; it is fol-
lowed by its argument list.

The nal step is to add the function swap which exchanges two pointers.
This is of course adapted directly from a routine we presented early in the
chapter.

swap(px, py) /- swap *px and *py -/
char *Dx[1. my! 1;

char -k;

k =
‘PX = ‘DY;
*r>y = k;

l

Notice that the pointers involve two levels of indirection.

CHAPTER 6; STRUCTURES

A structure is a collection of one or more objects, probably of different types,
grouped together under a single name for convenient handling. (Structures are
called “records” in some languages, most notably Pascal.) The elements of a struc-
ture are called members.

The classical example of a structure is the payroll record: an “employee” is
described by a set of attributes which would normally be separate variables, such as
name, address, social security number, salary, etc. Some of these variables in turn
could be structures: a name has several components, as does an address and even a

salary.
If well used, structures contribute markedly to orderly data layouts. Large

programs in particular benet from the organizing force that structures provide. In
this chapter we will try to illustrate how structures are used. The programs we will
use are bigger than many of the others in the book, but still of modest size.

6.1 Basics
To illustrate the basic syntactic rules, let us revisit the date conversion rou-

tines of Chapter 5. A date clearly consists of several pieces — a year, a day of the
year, a month, and a day of the month. So these could all be placed into a single
structure like this:

struct date (

int year;
char leap;
int yearday;
int month;
char mon_name[4l;
int day;

l;
We include leap and mon_name to show a structure containing several types of
variables.

The keyword struct introduces a structure declaration, which is a list of vari-
able declarations enclosed in braces. The format of the declaration is free, but con-
ventionally declarations are written one variable per line. An optional name called
the structure tag may follow the word struct (as with date here). The tag names
this kind of structure, and can be used subsequently as a shorthand for the whole
declaration. The names used within the structure declaration are called “members.”

1

2 THE C PROGRAMMING LANGUAGE CHAPTER 6

Although a structure member and an ordinary variable can have the same name
without conict, this can be confusing unless used carefully.

The right brace may be followed by a list of variables, just as for any basic
type. That is,

struct {] x, y, z;

is syntactically equivalent to

int x, y, z;

in the sense that each statement declares x, y and z to be objects of the named type.
A structure declaration that is not followed by a list of variables allocates no

storage; it merely denes a template or shape of structure. If the declaration is
tagged, however, the tag can be used later to declare actual instances of the struc-
ture. For example, given the declaration of date above,

struct date birthdate;

makes a variable birthdate which is a structure of type date.
An external or static structure can be initialized by following its declaration by

a list of initializers for the components:

struct date birthdate == {1776, 1, 186, 7, "Jul", 4};

describes the date of independence of one of the larger American republics.
Now we can compute. A member of a structure is referenced in an expres-

sion by a construction of the form

structure. member

To set leap in the structure d, we write

d.leap -= (d.year%4O0 === 0) ll (d.year%100 l= 0 && d.year%4 = = 0);

Structures can be nested; a payroll record might actually look like

struct person {

char name[50];
char addressl50l;
int zipcode;
long ss_number;
float salary;
struct date birthdate;
struct date hlredate; .

The person structure contains two dates. To refer to the month of birth for some-
one,

struct person p;

m = p.birthdate.month ’

And to access the rst character of the name eld in this structure, write

CHAPTER6 STRUCTURES A3

p.name[Ol

6.2 Structures and Functions
There are a number of restrictions on C structures. The essential rules are

that the only things that you can do a structure are to take its address with &, and
access one of its members. This implies that structures may not be assigned to or
copied as a unit, and that they can not be passed to or returned from functions.
Pointers to structures do not suffer these limitations, however, so structures and
functions do work together comfortably. Finally, automatic structures, like
automatic arrays, cannot be initialized; only external or static structures can.

Let us investigate some of these points by rewriting the date conversion func-
tions of the last chapterto use structures. Since the rules prohibit passing a struc-
ture to a function directly, we must either pass the components separately, or pass a

pointer to the whole thing. Since structure members are just ordinary variables, the
rst alternative is in effect what we’ve already done:

d.yearday = day_of_year(d.year, d.month, d.day);

So we might better pass the structure pointer. If we have

struct date hiredate;

we can then write

yearday = day_or_year(&hiredate);

to pass the pointer to day_of_year. The function itself has ‘to be modied too,
since its argument is now a structure pointer rather than a list of variables.

day_of_year(pd) /~ return day of year ~/
struct date -pd;_

int i;

pd—>leap = (pd—>year%4O0 -=== 0)
ll (pd—>year%100l= O && pd—>year%4 === 0);

for (i -= 1; i < pd—>month; i++)
pd— >day + — day_tab[pd— >le&Dl[i]:

return(pd— >day);
'

The declaration

struct date ~pd;

says that pd is a pointer to that kind of structure. The notation exemplied by

pd— > leap

is new. If p is a pointer to a structure, then

p — > member ofstructure

refers to the particular member. So

4 THE C PROGRAMMING LANGUAGE CHAPTER 6

pd- > leap

is the leap year indicator,

pd— >year

is the year, and so on. Structure pointers are so common that the - > notation is
provided as a shorthand for the equivalent

(1-pd).year

As you might expect, there is considerable potential for error in coupling a
pointer to one structure with a member of another.

For completeness, here is the other function, month_day, rewritten with
structures. The only change necessary is to convert references to arguments into
structure offsets.

month_day(pd) /~ set month and day from day of year #/
struct date -pd;
{

int i;

pd—>leap - (pd—>year°/@400 =-= 0)
ll (pd—>year%100!== O 8\& pd—>year%4 == O);

pd— >day =- pd— >yearday;
for (i = 1; pd—>day > day_tab[pd—>|eapl[i]; i++)

pd— >day — = day_tab[pd— > |eaDl[il:
pd—>month -= i;

For complicated pointer expressions, it’s wise to use parentheses to make it
clear who goes with what. For example, given the declaration

struct {

int x;
int ~y;

l *0;

then

p— >x+ + increments x
++p—>x so does this
(+ + D) — > x increments p before getting x
~p— >y+ + uses y as a pointer, then increments it
~(p—>y)++ so does this
*(p+ +)— >y uses y as a pointer, then increments p

The way to remember these is that —>, . (dot), () and H bind very tightly. An
expression involving one of these is treated as a unit: p— >x, all], y.x and f(b) are
names exactly as x is.

CHAPTER 6 STRUCTURES 5

6.3 Arrays of Structures
Suppose we want a program that counts occurrences of each C keyword. One

possibility is to use two parallel arrays keyword and keycount to store a pointer to
the name and the count. But the very fact that the arrays are parallel indicates that
a different organization is possible. Each keyword entry is really a pair:

char *keyword;
int keycount;

and there is a whole set of pairs.
The structure declaration

struct key {

char ~keyword;
char keycount;

} keytab[NKEYS];

denes an array keytab of structures of this type, and allocates storage to them.
Since this structure actually contains a constant set of names, however, it is easy to
initialize it once and for all when it is declared. The structure initialization is quite
analogous to earlier ones — the declaration is followed by a list of initializers
enclosed in braces:

struct key {

char *keyword;
int keycount;

) keytabll ={
"break", O,

"case", 0.
"char",O,
"continue", O,

"default", O,

"do", 0,
/~ =~/

"whlle", 0,
NULL,O

};

The declarations are listed in pairs corresponding to the structure members. It is
more precise to enclose initializers for each “row” or structure in braces, as in

{ "break", 0 },
{ "case", O },

but the braces may be omitted when the initializers are simple and there are no
omissions. We terminated the list with a null pointer to make it easy for programs
to nd the end of the array. As usual, the compiler computes the size of the array
keytab itself when initializers are present and the [1 is left empty.

The counting program can now be nished. To illustrate communication with
external structure denitions, we have chosen to modify the binary search program
so that the array it searches is an external structure, rather than an argument. This

6 THE C PROGRAMMING LANGUAGE CHAPTER 6

degeneralizes it, of course, but in this case it is actually the easiest way to do the
job. We must also alter the binary search routine to compare strings of characters
instead of integers.

struct key{
char ~keyword;
int keycount;

} keytabll ==l
"break", 0,
"case", 0,
/* -/
"while", 0,
NULL,O

#dene MAXWORD 20

main() /=~ count dccurrences of C keywords */
{ _ '

int n, t;
char word[MAXWORDi;

while ((t — getword(word, MAXWORD)) != EOF)
if (l ===- LETTER)

if ((n == binary(word)) >- 0)
keytab[n].keycount+ +;

for (n = O; n < NKEYS; n++)
if (keytab[n].keycount > 0)

printf(“%4d %s\n",
keytablnlkeycount, keytab[n].keyword);

} \\-Q
<5"?

Q

|

CHAPTER 6 STRUCTURES 7

binart/(word) /* find word in keytab[0] keytab[NKEYS—1] */
char *word;
{

int low = O,- high = NKEYS—1, mid, cond;

while (low <= high) i
mid = (low+high) / 2; e

if ((cond = strcmp(word, keytab[mid].keyword)) === 0)
returnimid);

else if (cond < 0)
high = mid - 1;

else
V

low = mid + 1;
l
return(—1);

} ,

We will describe the function getword in a moment; for now it suices to say that it
returns LETTER each time it nds a word, and copies the word into its rst argu-
ment. - A

The quantity NKEYS is the number of keywords in keytab. Although we
could count this by hand, it’s a lot easier to do it by machine. One possibility would
be to write a loop which counts along keytab until it nds the null pointer, then
assign it to a global variable.

But this is more than is needed, since the size of the array is completely deter-
mined at compile time. C provides a compile-time unary operator called sizeof
which can be used to compute the size of any object. The expression

sizeof (objecr)

yields an integer equal to the size of the specied object. (The size is given in
unspecied units called “bytes,” which are generally the same size as a char.) The
object can be an actual variable or array or structure, or it can be a type like int or
double. In our case, the number of keywords is

sizeof (keytab) / sizeof (individual entry)

Thus by including in the program the denition

#define NKEYS (sizeof (keytab) / sizeof (struct key) >
NKEYS is dened properly. t

L Now the function getword. We have actually written a more general getword
than is necessary for this program, but it is not really more complicated. i getword
returns the next “token” from the input, where a token is either an identier in the
C sense (that is, a maximal string of letters and digits beginning with a letter), or a

single character. The type of the object is returned as a function value; it is
LETTER if the token is a word, DIGIT for a digit, or the character itself if it is non-
alphanumeric.

It

8 THE C PROGRAMMING LANGUAGE CHAPTER 6

getword(w, lim) /~ get next word from input ~/

char *w;
int lim;
l

int c;

if (type(c = ~w++ = getc()) != LETTER) i
*w -= ‘\0';
return(c);

}

while (-—|im > O)

if ((c == type(*w++ = getc())) !== LETTER && c I-= DIGIT)

break;
ungetc(c);
-(w—1) -= '\0';
return(LETTER);

Notice that getword uses the routines getc and ungetc which we wrote in Chapter

4: when the collection of an alphabetic token stops, getword has gone one character

too far. The call to ungetc pushes that character back on the input for the next call.

getword calls type to determine the type of each individual character of input.

typeic) /~ return type of character */
int C;

l
if (c >== ‘a’ && c <= 'z‘ ll c >= ‘A’ && c <= 'Z')

return(LETTER);
else it (c >- '0' && c <= '9')

return(DlGlT);
T else

return(c);
}

The symbolic constants LETTER and DIGIT can have any values that do not conict

with non-alphanumeric characters and EOF; The obvious choice is

#define LETTER ’a'
#defin6 DlGiT '0'

Exercise 6-1: getword can be faster if calls to the function type are replced by

references to an appropriate array typel 1. Make this modication, and measure

the change in speed of the program. E1 '

CHAPTER 6 STRUCTURES 9

6.4 Pointers to Structures
To illustrate some of the considerations involved with pointers and arrays of

structures, let us write the keyword-counting program over again using pointers
instead of array indices.

The external declaration of key need not change, but main and binary do
need modication.

main() /=- count occurrences of C keywords; pointer version -/
{

int n, t;
char word[MAXWOFlDl;
struct key =~binary(). *0;

while ((1 == getword(word, MAXWORD)) != EOF)
if (l = == LETTER)

if ((0 = binal'Y(W0rd)) l= NULL)
p— > keycount+ +;

for (p = keytab; p < keytab + NKEYS; p++)
if (p—>keycount > 0)

printf("%4d %s\n", p- > keycount, p— > keyword);

struct key ~binaI'y(word) /~ find word in keytab[0] keytab[NKEYS—1] ~/
char -word;
(

int cond;
struct key =~=low == keytab, *high == keytab+NKEYS—1,*mid;

while (low <= high) {

mid = low + (high—low) / 2; r

if ((cond = strcmp(word, mid—>keyword)) == 0)
return(mid);

else if (cond < 0)
high == mid — 1;

else
low = mid + 1;

}

return(NULL);

There are several things worthy of note here. First, the declaration of binary
must indicate that it returns a pointer to the structure type key, instead of an
integer; this is declared both in main and in binary.

Second, all the accessing of elements of keytab is done by pointers. This
causes one signicant change in binary: the computation of the middle element can
no longer be simply

10 THE c PROGRAMMING LANGUAGE CHAPTER 6

mid = (low+high) / 2

because the addition of two pointers will not in general produce any kind of a useful
answer (even when divided by 2). This must be rearranged into ‘

mid -= low + (high—low) / 2

which increments low by the right number of elements.
You should also study the initializers for low and high: It is possible to ini-

tialize a structure pointer to the address of a previously dened object; that is pre-

cisely what we have done here. i

Finally, in main we wrote

for (p == keytab; p < keytab + NKEYS; p++)
We could equally well have used the fact that keytab is terminated by a null
pointer, and written

for (p - keytab; p—>keyword l=-= NULL; 0+ +)

If p is a pointer to a structure, any arithmetic on p takes into account the

actual size of the structure. For instance, p++ increments p by the correct amount
to get the next element of the array of structures. But don’t assume that the size of
a structure is the sum of the sizes of its members - because of alignments of
different sized objects, there may be “holes” in a structure.

6.5 Nested Structures
Suppose we want to handle the more general problem of counting the

occurrences of all the words in some input. Since the list of words isn’t known in
advance, we can’t sort it and use a binary search. Yet we can’t do a linear search

for each word as it arrives; the program would take forever. How can we organize
the data to cope efciently with a list of arbitrary words? S

.

One solution is to keep the set of words sorted at all times, by placing each

word into its proper position in the order as it arrives. This can’t be done by shift-
ing words in a linear array, though - that also takes too long. Instead we will use a

data structure called a binary tree.
The tree contains one “node” per distinct word; each node contains

a pointer to the actual word
the count
a pointer to the left child
a pointer to the right child

No node may have more than two children; it might well have only zero or one.

The nodes are maintained so that at any node the left subtree contains only
words which are less than the word at the node, and the right subtree contains only
words that are greater. The tree is inherently recursive, of course, so recursive rou-
tines for, insertion and printing will be most natural.

Going back to the description of a node, it is clearly a structure with four
components: M

CHAPTER 6 STRUCTURES ll

struct node { /* the basic node -/
char i-word;/* points to the text =-/

int count;
strucl node deft; /~ left child -/
struct node *right; /~ right child -/

This. “recursive” denition of a node might look chancy, but it’s actually quite
correct. It is illegal for a structure to contain an instance of itself, but

struct node Heft;

is a pointer to a node, not a node itself.
The code for the whole program is surprisingly small, given a handful of sup-

porting routines that we have already written. These are getword, to fetch each
input word, and alloc, to provide space for squirreling the words away.

#define MAXWORD 20 ‘

main(l /- word frequency count ~/
l

struct node *top. *tree(lid
char word[MAXWORD];
int t;

lop - NULL;
while ((t = getword(word, MAXWOFlD)) l== EOF)

if (I = -= LETTER)
top - tree(top, word);

treeprintitopl;

12 THE c PROGRAMMING LANGUAGE CHAPTER 6

struct node -tree(p, w) /* install w at or below p -/
struct node -p;
char *w;
{

struct node =-talloc();
char *alloc();
int cond;

if (p --= NULL) l /- a new word #/
p -= tal|oc();/~ make a new node */
p— >word = alloc(strlen(w)+1);
strcpy(p— >word, w):
p—>count= 1;
p—>left == p—>rlght == NULL;

} else if (tcond =-= strcmp(w, p— >word)) =-= 0) /r repeated word -=/

p— > count+ +;
else if (cond < O) /- lower goes into left ~/

p- >left - tree(p— >left, w):
else /~ greater into right ~/

p— >right = tree(p— >right, w);
return(p);

treeprlnt(p) /~ print tree p recursively -/
struct node -vp;

l
at (p 1- NULL) l

treeprlnt(p— > left);
printf("%4d %s\n", p- >count, p— >word);
treeprint(p— > right);

l

The main routine simply reads words with getword and installs them in the
tree with tree.

tree itself is straightforward. A word is presented by main to the top level
(the root) of the tree. At each stage, that word is compared to the word already
stored at the node, and is percolated down to either the left or right. Eventually the
word either matches something already in the tree (in which case the count is incre-
mented), or it has to be added at the edge. If a null pointer is encountered, a node
must be created and added to the tree.

Storage for the new node is fetched by a routine talloc, which is an obvious
adaptation of the alloc we wrote earlier. The new word is copied to a hidden place
provided by alloc, the count initialized, and the two children made null. This part
of the code is executed only at the edge of the tree, when a new node is being
added. We have (unwisely for a production program) omitted error checking on the
values returned by alloc and talloc.

If the word has been seen before, it will be found in the interior of the tree.
In that case its count is incremented. Otherwise, tree is called recursively to place

cnamaa 6 STRUCTURES 13

the word in either the left or right subtree as appropriate.
treeprint prints the tree in left subtree order; at each node, it prints the left

subtree (all the words less than this word), then the word itself, then the right sub-
tree (all the words greater). If you feel shaky about recursion, draw yourself a tree
and print it with treeprint; it’s one of the cleanest recursive routines you can nd.

6.6 Table Lookup
In this section we will write the innards of a table-lookup package as an illus-

tration of more aspects of structures. This code is typical of what might be found at
the heart of a macro processor or compiler for symbol table management.

There are two major routines and a table. instal|(s, t) installs the string s into
the table with the string value t. i0okup(s) searches for s in the table; if found, it
returns a pointer to the place in the table where it was found.

The algorithm used is a hash table search — the incoming name is converted
into a small integer, which is then used to index into a table. each table entry is the
beginning of a list of values that have that hash value.

Here is the code.

#define HASHSIZE 199 /* must be prime ~/

struct nlist { /* basic table entry ~/
char mame;
char *def;
struct niist =-next; /~ next entry in the chain */

}:

struct nlist *hshtab[HASHSlZE]; /~ the table of pointers */

struct nlist *lookup(str) /- look for str in hshtabwl
char rstr;{.

register char *s1;
register struct nlist mp;
static struct nlist nodef; /* return this if not found ~/

s1 = str;
for (hshval = 0; ~s1;)

hshval += -s1++;
hshval °/i-= HASHSIZE;
for (np — hshtablhshvall; np != NULL; np -= np—>next)

if (strcmp(str, np—>name) == O)
return(np);

return(&nodef);

lookup performs the hashing operation on the string, in this case adding up the
character values and forming the remainder modulo the table size. This produces a
starting index in the table hshtab; if the argument is to be found, it will be in the
chain of entries beginning there. If lookup nds the netry already present, it

14 THE c PROGRAMMING LANGUAGE CHAPTER 6

returns a pointer to it; if not, it returns a pointer to a structure known not to be part
of the list. V

install uses Iookup to determine whether the name being installed is already
present; if so, the new denition must supersede the old one. Otherwise, a com-
pletely new entry is created. t

char *install(nam, val) /-r install (nam, val) in hshtab */
char -nam, ~val;
l

register struct nlist mp, *lookuD();
char '-strsave(l: '

it ((np - lookup(nam))—>name -=— NULL) {/* not found ~/
if ((np - alloc(siz‘eof(*npl)) -== NULL)

returnlnp); ‘ l

np—>_name == strsave(nam);
np— >def = strsavelvall;
np->next = hshtablhshvall;
hshtablhshvall = np;

} else { /~ already there ~/
free(np— >def);
np— >def == strsavelvall;

l
return(np- >def);

}

strsave merely copies the string given by its argument into a safe place,

obtained by a call on alloc.

char vstrsavelsl /=~ save string s somewhere */
char ~s;

l
char ~p, -alloc():

if ((p - alloclstrlen(s)+1)) l - NULL)
strcoylp. sl;

return(p);

With this must code in hand, it’s a very small step to write, for example, a

small macro processor, capable of handling the #deflne statement so long as there
are no arguments. '

Exercise 6-2: Write a routine which will remove a name and denition from the
table maintained by Iookup and install. El

CHAPTER 1; INPUT AND OUTPUT

Input and output facilities are not part of the C language, so we have
de-emphasized them in our presentation thus far. Nonetheless, real programs
do interact with their environment in much more complicated ways than those
we have shown before. In this chapter we will describe, “the ‘standard I/O
library,” a set of functions designed to provide a standard I/0 system for C
programs. The functions are intended to present a convenient programming
interface, yet reect only operations that can be provided on most modern
operating systems. The routines are efcient enough that users will not feel
the need to circumvent them ‘ffor efficiency” regardless of how critical the
application. Finally, the routines are meant to be “portable,” in the sense that
they will exist in compatible form on any system where C exists, and that pro-
grams which conne their system interactions to facilities provided by the stan-
dard library can be moved. from one system to another essentially without
change. i

We will not try to describe the entire I/0 library here; we are more
interested in showing the essentials of writing C programs that interact with
their operating system environment.

7.1 Access to the Standard Library
Each source le that refers to a standard library function must contain

the line

#lnclude <stdio.h>

near the beginning. The le stdlo.h denes certain macros and variables used
by the I/0 library. (The use of < and > instead of the double quotes implies
a search for the le in a special place.) Furthermore, it may be necessary when
loading the program to specify the library explicitly; for example, on Unix, the
command to compile a program would be

cc [source files, etc.] —lS

where —lS indicates loading from the standard library.

1

2 THE C PROGRAMMING LANGUAGE CHAPTER 7

7.2 “Standard Input” and “Standard Output” — getchar and putchar
The simplest input mechanism is to read a character at a time from the

“standard input,” which is generally the user’s terminal, with getchar.
getcharl) returns the next input character each time it is called. In most
environments that support C, a le may be substituted for the terminal by
using the ‘<’ convention: if prog uses getchar, then the command line

prog <infile

causes prog to read inle instead of the terminal. prog itself knows nothing
about where its input is coming from. This is also true if the input comes
from another program via the pipe mechanism:

otherprog I prog

will provide the input for prog from the output of otherprog.
getchar returns the value EOF when it encounters end of le (or an

error) on whatever input is being read. The standard library denes the sym-
bolic constant EOF to be -1, but tests should be written in terms of EOF, not
—-1. so as to be independent of the specic value.

For output, putcharlc) puts the character c on the “standard output,”
which is also by default the terminal. The output can be captured on a le by
using ‘>’: if prog uses putchar,

prog >outti|e

will write the output onto outle instead of the terminal. On Unix or GCOS, a

pipe can also be used:

prog I otherprog

puts the output of prog into the input of otherprog.
The function printf, which formats output in various ways, uses the

same mechanism as putchar so output produced by printf also nds its way to
the standard output, and calls to putchar and printf may be interleaved.

A surprising number of programs read only one input and write one out-
put; for such programs I/O with getchar, putchar, and printf may be entirely
adequate, and it is almost always enough to get started. This is particularly
true given a pipe facility for connecting the output of one program to the input
of the next. For example, here is a complete program that acts as a “lter” to
strip out all ASCII control characters except newline and tab from its input.
The program relies on the numerical properties of the ASCII character set —

control characters are less than blank, or greater than or equal to octal 177.

CHAPTER 1 INPUT AND ourrur 3

main() /~ strip out control characters */
{

int c;

while ((0 = getcharl)) != EOF)
if ((6 >= ' ' 881 C < 0177) ll C == '\t' ll c == '\n')

putchar(c);

If it is necessary to treat multiple les, you can use a program like the utility
cat to collect the les for you:

cat let le2 I ccstrip >output

and thus avoid learning how to access les from a program). (cat is presented
later in this chapter.)

As an aside, in the standard I/O library the “functions” getchar and
putchar are actually macros, and thus avoid the overhead of a function call per
character.

7.3 Formatted Output — printf
The two routines printf for output and scant for input permit translation

to and from character representations of numerical quantities. They also allow
generation or interpretation of formatted lines. We have used printf informally
throughout the previous chapters; here is a complete description.

printf(control, argt, arg2, ...)

printf converts, formats, and prints its arguments on the standard output
under control of the control string. The control string contains two types of
objects: plain characters, which are simply copied to the output stream, and
conversion specications, each of which causes conversion and printing of the
next successive argument to printf.

Each conversion specication is introduced by the character %. Follow-
ing the % there may be:
I an optional minus sign ‘——’ which species left adjustment of the con-

verted argument in it eld;
0 an optional digit string specifying a minimum eld width; if the con-

verted argument has fewer characters than the eld width it will be pad-
ded on the left (or right, if the left adjustment indicator has been given)
to make up the eld width; the padding character is blank normally and
zero if the eld width was specied with a leading zero (note that this
does not imply an octal eld width);

0 an optional period ‘.’ which serves to separate the eld width from the
next digit string;

0 an optional digit string (the precision) which species the maximum
number of characters to be printed from a string, or the number of digits
to be printed to the right of the decimal point of a oating or double
number.

4 THE C PROGRAMMING LANGUAGE CHAPTER 7

an optional length modier I (letter ell) which indicates that the
corresponding data item is a long rather than an int.
a character which indicates the type of conversion to be applied.

The conversion characters and their meanings are:

d

IIIOCXO

e

f

9

The argument is converted to decimal notation.
The argument is converted to octal notation (including a leading zero).
The argument is converted to hexadecimal notation.
The argument is converted to unsigned decimal notation.
The argument is taken to be a single character.
The argument is taken to be a string and characters from the string are

printed until a null character is reached or until the number of characters

indicated by the precision specication is exhausted.
The argument is taken to be a float or double and converted to decimal

notation of the form [-] m.nnnnnnE [-1 xx where the length of the

string of n’s is specied by the precision. The default precision is 6 and

the maximum is 22.
The argument is taken to be a float or double and converted to decimal

notation of the form [—]mmm.nnnnn where the length of the string of
n’s is specied by the precision. The default precision is 6 and the max-

imum is 22. Note that the precision does not determine the number of
signicant digits printed in f format. '

Use %e or %f, whichever is shorter; print no unnecessary zeros.

If no recognizable conversion character appears after the % that character is

printed; thus % may be printed by °/»%.

7.4 Formatted Input - scanf
The function scant is the input analog of prlntf, and provides many of

the same conversion facilities.

scancontrol, argt, arg2, ...)

scanf reads characters from the standard input, interprets them according to a

format, and stores the results in its arguments. It expects a control argument,

described below, and a set of arguments, each of which must be a pointer, indi-
cating where the converted input should be stored.

The control string usually contains conversion specications, which are

used to direct interpretation of input sequences. The control string may con-

tain:
(1)
(2)

(3)

Blanks, tabs or newlines, which are ignored.
Ordinary characters (not %) which are expected to match the next non-
space character of the input stream (space characters are blank, tab or
newline). ,

Conversion specications, consisting of the character %, an optional
assignment suppression character ~, an optional numerical maximum
eld width, and a conversion character.

A conversion specication is used to direct the conversion of the next input
eld; the result is placed in the variable pointed to by the corresponding

CHAPTER 7 INPUT AND OUTPUT 5

argument, unless assignment suppression was indicated by the * character. An
input eld is dened as a string of non-space characters; it extends either to
the next space character or until the eld width, if specied, is exhausted.

The conversion character indicates the interpretation of the input eld;
the corresponding pointer argument must usually be of a restricted type.
Pointers, rather than variable names, are required by the “call by value”
semantics of the C language. The following conversion characters are legal:
% indicates that a single % character is expected in the input stream at this

point; no assignment is done.
d indicates that a decimal integer is expected in the input stream; the

corresponding argument should be an integer pointer.
0 indicates that an octal integer is expected in the input stream; the

corresponding argument should be a integer pointer.
x indicates that a hexadecimal integer is expected in the input stream; the

corresponding argument should be an integer pointer.
s indicates that a character string is expected; the corresponding argument

should be a character pointer pointing to an array of characters large
enough to accept the string and a terminating \O which will be added.
The input eld is terminated by a space character or a newli_ne.

c indicates that a single character is expected; the corresponding argument
should be a character pointer; the next input character is placed at the
indicated spot. The normal skip over space characters is suppressed in
this case; to read the next non-space character, try %1 s.

e or findicates that a oating point number is expected in the input stream;
the next eld is converted accordingly and stored through the
corresponding argument, which should be a pointer to a float. The input
format for oat’s is an optional sign, a string of numbers possibly con-
taining a decimal point, followed by an optional exponent eld containing
an E or e followed by a possibly signed integer.

[indicates a string not to be delimited by space characters. The left
bracket is followed by a set of characters and a right bracket; the charac-
ters between the brackets dene a set of characters making up the string.
If the rst character is not circumex ('), the input eld is all characters
until the rst character not in the set between the brackets; if the rst
character after the left bracket is ", the input eld is all characters until
the rst character which is in the remaining set of characters between the
brackets. The corresponding argument must point to a character array.
The conversion characters d, o and x may be preceded by l (letter ell) to

indicate that a pointer to long rather than int is expected. Similarly, the
conversion characters e or f may be preceded by I to indicate that a pointer to
double rather than float is in the argument list. The character h will function
similarly in the future to indicate short data items.

For example, the call

6 THE C PROGRAMMING LANGUAGE CHAPTER 7

int i;
float x;
char name[50l;
scant("%d %f %s", &i, &x, name);

with the input line

25 54.32E—1 thompson

will assign to i the value 25, x the value 5.432, and name will contain “thomp-
son\O”. Or,

int i;
float x;
char name[5O];
scanf("%2d %f %~d %[1 2345678901", &i, &x, name);

with input

56789 0123 56a72

will assign 56 to i, 789.0 to x, skip “0l23”, and place the string “56\0” in
name. The next call to any input routine will return a.

scant returns as its value the number of successfully matched and
assigned input items. This can be used to decide how many input items were
found. On end of le, -1 is returned; note that this is different from 0, which
means that the next input character does not match what you called for in the
control string.

7.5 In-memory Format Conversion l

The functions scant and printf have siblings called sscanf and sprintf
which perform identical conversions, but operate on a string instead of a le.
The general format is

sprintflstrlng, control, arg1, arg2, ...)

sscanflstring, control, arg1, arg2, ...)

sprinti formats the arguments in argl , arg2, etc., according to control
as before, but places the result in string instead of on the standard output.
string of course had better be big enough to receive the result.

sscanf does the reverse conversions — it scans the string according to
the format in control, and places the resulting values in argl, arg2, etc.
These arguments must be pointers.

CHAPTER 7 INPUT AND OUTPUT 7

7.6 File Access
The programs we have written so far have all read the standard input

and written the standard output, which we have assumed are magically pre-
dened for a program by the local operating system.

The next step in I/O is to write a program which accesses a le which is
not already connected to the program. One simple example which clearly illus-
trates the need for such operations is cal, which concatenates a set of named
les onto the standard output. cal is used as a general-purpose input collector
for programs which do not have the capability of accessing les by name, and
merely for listing things. For example, the command

cat foo gorp

will concatenate the contents of the les foo and orp onto the standard out-
put.

The question is how to arrange for the named les to be read — that is,
how to connect the external names that a user thinks of to the statements
which actually read the data.

The rules are simple. Before it can be read or written a le has to be
opened by the standard library function fopen. fopen takes the external name
(like foo), does some housekeeping and negotiation with the operating system
(details of which needn’t concern us), and returns an internal name which
must be used in subsequent reads or write of the le.

This internal name is actually a pointer to a structure which contains
information about the le. We will call the pointer the le pointer. Users don’t
need to know the details of the structure that the le pointer refers to, for part
of the standard I/0 denitions obtained by #inc|ude <stdio.h> is a
denition called FILE. The only declaration needed for a le pointer is
exemplied by

FILE ~fopen(), sip;

This says that fp is a pointer to a FILE, and fopen returns a pointer to a FILE.
The actual call to fopen is

fp = fopen("foo“, "r");

The rst argument of fopen is the name of the le as a character string. The
second argument is the mode, which indicates whether one intends to read
("r"), write ("W"), or append ("a") to the le.

If you open a le which does not exist for writing or appending, it is
created (if possible). Opening a le that does not exist for reading is an error,
and of course there may be other causes of error (like trying to read a le
when you don’t have permission). Any error causes fopen to return the null
pointer value NULL.

The next thing needed is a way to read or write the le once it is open.
There are several possibilities. The function getc returns the next character
from a le; it needs the le pointer to tell it what le. Thus

8 rue c PROGRAMMING LANGUAGE cnarraa 1

C == Qetc(fD)

places in e the next character from the le referred to by fp. Like getchar,
getc is a macro, not a function.

The macro putc is the inverse of getc:

putclc, fp)

puts the character c on the le fp and returns c. _

For formatted input or output on les, the functions fprintf and fscanf
may be used. These are identical to printf and scanf, save that the rst argu-
ment is a le pointer that species the le to be read or written.

With all of these preliminaries out of the way, we can actually write the
program to concatenate les. The basic design that we have selected for cat is
one that has been found convenient for many programs: if there are argu-
ments, they are processed in order. If there are no arguments,_ the standard
input is processed. This way the program can be used stand-alone or as part of
a larger process.

#lnclude < stdio.h >

main(argc, argv) /~ cat: concatenate files ~/
int argc;
char -argv[];
{

FILE ~fp, ~fopen():

if (argc == 1) /~ no arguments; copy standard input */
filecopylstdin);

else
while (——-argc > O)

if ((fD = fopen(*++argv, "r")) == NULL) {

printf("cat: can't open %s\n", sargvl;
break;

} else {

filec0DY(fD);
fclose(fp)-;

}

CHAPTER 7 INPUT AND ourvur 9

iilecopylfpl /* copy ip to standard output =~/ ~

FILE *fp;
l

int c;

while ((c = getclfpll != EOF)
putc(c, stdout);

The le pointers stdin and stdout are pre-dened in the I/O library as the
standard input and standard output; they may be used anywhere an object of
type FILE can be. They are not variables, however, so don’t try to assign to
them.

getchar and putchar are dened in terms of getc and putc and stdin
and stdout as follows:

#define getchar getclstdinl
#dene putcharlcl putclc, stdout)

If you call any of these four “functions” with the wrong number of argu-
ments, you will get some rather mysterious syntax error messages from the
compiler.

The function fclose is the inverse of fopen; it breaks the connection
between the le pointer and the external name that was established by fopen,
freeing the le pointer for another le. Since most operating systems have
some limit on the number of simultaneously open les that a program may
have, it’s a good idea to free things when they are no longer needed, as we did
here in cat. ‘

7.7 Error-Handling — stderr and exit
The treatment of errors in cat is adequate, but not ideal. The trouble is

that if one of the les can’t be accessed for some reason, the diagnostic is at
the end of the concatenated output. That is acceptable if that output is going
to a terminal, but bad if it’s going into another le.

To handle this situation in a better way, a second output le, called
stderr, is assigned to a program in the same way that stdin and stdout are. If
at all possible, output written on stderr appears on the user’s terminal even
when output for stdout is sent to a le.

Let us» revise cat to handle errors better.

10 rm; c PROGRAMMING LANGUAGE CHAPTER 7

#include < stdio.h >

main(argc, argv) /~ concatenate files */
int argc;
char ~argv[1;

l
FILE -fp, ~fopen(ll

if (argc == 1) /* no arguments; copy standard Input ~/
filecopyistdinl;

else
while (——argc > O)

if ((fp = fopen(~=++argv, "r")) == NULL) {

fprintfistderr, "cat: can't open %s\n", *argv);
exit(1); ‘

] else {

filecom/(fp);
fclose(fD);

}

exit(0l;

The program signals errors two ways. The diagnostic output goes onto
stderr, so it nds its way to the user’s terminal instead of disappearing down a

pipeline or into an output le.
The program also uses the standard library function exit, which ter-

minates program execution when it is called. The argument of exit is available
to whatever process called this one, so the success or failure of the program
can be tested by another program that uses this one as a sub-process. By con-
vention, a return value of 0 signals that all is well, and various non-zero values
signal abnormal situations.

7.8 The #include Processor
The next major example is a program which processes lines which con-

tain #include statements. It is very easy for this program to handles nested
#include’s by recursion, with a fresh level of recursion for each level of nest-
mg.

Our version uses two new routines from the standard library. fgets is

reminiscent of the getline function that we have used throughout the book.
The call

fgets(line, MAXLINE, fp)

reads the next input line from le fp into the character array line; at most
MAXLINE characters will be read. The resulting line is terminated with \0.
Normally fgets returns line; on end of le it returns NULL.

fputs writes a line to a le:

CHAPTER 7 INPUT AND OUTPUT 11

fputs(line, fp)

and returns line. A

We have also used sscanf to break out the rst two strings of each input
line rather than write a separate routine.

#include <stdio.h>
#define MAXLINE 1000

main() /=~ process #include */
{

inolude(stdin);
exit(O);

include(fp) /* include file fp */
FILE ~rp;

{

char $1[MAXLlNE], $2[MAXL|NE], line[MAXLlNE];
FILE *f, *fopen();
int n;

while (fgets(line, MAXLINE, fp) != NULL)’ {X/
n = sscanf(line, "%s %s", s1, s2);

A

if (n l= 2 ll strcmp(s1, "#include“) != 0)
fputs(line, stdout);

else if ((f = fopen(s2, "r")) == NULL) {

fprintstderr, "include: can't open %s\n", s2);
exit(1);

} else {

lnclude(f);
fclose(f);

}

}

By the way, there is nothing magic about the function fgets; it is just a

C function. Here it is, copied directly from the I/O library:

12 THE c PROGRAMMING LANGUAGE CHAPTER 1

#include <stdio.h >

fgetsis. n. iop)
char ~s;

register FILE ~iop;
{

register c;
register char -cs;

CS = S;

white (— —n>0 as (c = getc(iop))> -0) {

*CS++ == C;

if (c=='\n’)
break;

}

if~(c<0 && cs===s)
return(NULL);

*cs++ =- '\0'; A

return(s);

Exercise 7-1: Write a program to compare two les, printing the rst line
and character position where they differ. E1

Exercise 7-2: Modify the pattern nding program of Chapter 5 to take its
input from a set of named les or, if no les are named as arguments,
from the standard input. Should the le name be printed when a matching
line is found? C1

Exercise 7-3: Write a program to print a set of les, starting each new one
on a new page, with a title and a running page count for each le. E1

C Reference Manual

Dennis M. Ritchie

Bell Laboratories
Murray Hill, New Jersey 07974

May 1, 1977-

1. Introduction
C is a computer language which offers a rich selection of operators and data types and the abil-
ity to impose useful structure on both control ow and data. All the basic operations and data
objects are close to those actually implemented by most real computers, so that a very eicient
implementation is possible, but the design is not tied to any particular machine and with a little
care it is possible to write easily portable programs.

This manual describes the current version of the C language as it exists on the PDP-ll,
the Honeywell 6000, the IBM System/370, and the Interdata 8/32. Where differences exist, it
concentrates on the PDP-l1,.but tries to point out implementation-dependent details. With few
exceptions, these dependencies follow directly from the underlying properties of the hardware;
the various compilers are generally quite compatible. r

2. Lexical conventions
Blanks, tabs, newlines, and comments as described below are ignored except as they serve to
separate tokens. Some space is required to separate otherwise adjacent identiers, keywords,
and constants.

If the input stream has been parsed into tokens up to a given character, the next token is
taken to include the longest string of characters which could possibly constitute a token.

2.1 Comments

The characters /* introduce a comment, which terminates with the characters */. Comments do
not nest.

2.2 Identifiers (Names)

An identier is a sequence of letters and digits; the rst character must be alphabetic. The
underscore ‘_’ counts as alphabetic. Upper and lower case letters are considered different. On
the PDP-11, no more than the rst eight characters are signicant, and only the rst seven for
external identiers.

2.3 Keywords
The following identiers are reserved for use as keywords, and may not be used otherwise:

-2.

int extern else
char register for
float typedef do
double static while
struct goto switch
union return case
long sizeof default
short break entry
unsigned continue
auto if

The entry keyword is not currently implemented by any compiler but is reserved for future
use. Some implementations also reserve the word fortran.

2.4 Constants
There are several kinds of constants, as follows:

2.4.1 Integer constants
An integer constant consisting of a sequence of digits is taken to be octal if it begins with O

(digit zero), decimal otherwise. The digits 8 and 9 have octal value 10 and ll respectively. A
sequence of digits preceded by Ox or OX (digit zero) is taken to be a hexadecimal integer. The
hexadecimal digits include a or A through f or F with values 10 through 15. A decimal con-
stant whose value exceeds the largest signed machine integer (32767 on the PDP-11) is taken to
be long; an octal or hex constant which exceeds the largest unsigned machine integer (0177777
or OXFFFF on the PDP-11) is likewise taken to be long.

2.4.2 Explicit long constants
A decimal, octal, or hexadecimal integer constant immediately followed by l (letter ell) or L is a
long constant, which, on the PDP-ll, has 32 signicant bits. As discussed below, on other
machines integer and long values may be considered identical.

2.4.3 Character constants
A character constant is a sequence of characters enclosed in single quotes ‘ ". Within a charac-
ter constant a single quote must be preceded by a backslash ‘\’. Certain non-graphic characters,
and ‘\’ itself, may be escaped according to the following table:

as \b
NL (LF) \n
CR \r
HT \t
FF \f
ddd \ddd
\ \\

The escape ‘\ddd’ consists of the backslash followed by 1, 2, or 3 octal digits which are taken to
specify the value of the desired character. A special case of this construction is ‘\0’ (not fol-
lowed by a digit) which indicates the character NUL. If the character following a backslash is not
one of those specied, the backslash vanishes.

The value of a single-character constant is the numerical value of the character in the
machine’s character set (ASCII for the PDP-ll). On the PDP-ll at most two characters are per-
mitted in a character constant and the second character of a pair is stored in the high-order byte
of the integer value. Character constants with more than one character are inherently
machine-dependent and should be avoided.

-3-

2.4.4 Floating constants
A oating constant consists of an integer part, a decimal point, a fraction part, an e or E, and
an optionally signed integer exponent. The integer and fraction parts both consist of a

sequence of digits. Either the integer part or the fraction part (not both) may be missing;
either the decimal point or the e and the exponent (not both) may be missing. Every oating
constant is taken to be double-precision.

2.5 Strings
A string is a sequence of characters surrounded by double quotes ‘ " ’. A string has type ‘array
of characters’ and storage class ‘static’ (see below) and is initialized with the given characters.
The compiler places a null byte ‘\0’ at the end of each string so that programs which scan the
string can nd its end. In a string, the character ‘ " ’ must be preceded by a ‘\’; in addition, the
same escapes as described for character constants may be used. Finally, a ‘\’ and an immedi-
ately following new-line are ignored.

All strings, even when written identically, are distinct.

3. Syntax notation

In the syntax notation used in this manual, syntactic categories are indicated by italic type, and
literal words and characters in sans-serif type. Alternatives are listed on separate lines. An
optional terminal or non-terminal symbol is indicated by the subscript ‘opt,’ so that

{ expressionop, }

would indicate an optional expression in braces. The complete syntax is given in §16, in the
notation of YACC.

4. What's in a Name?

C bases the interpretation of an identier upon two attributes of the identier: its storage class
and its type. The storage class determines the location and lifetime of the storage associated
with an identier; the type determines the meaning of the values found in the identier’s
storage.

There are four declarable storage classes: automatic, static, external, and register.
Automatic variables are local to each invocation of a block, and are discarded upon exit from
the block; static variables are local to a block, but retain their values upon reentry to a block
even after control has left the block; external variables exist and retain their values throughout
the execution of the entire program, and may be used for communication between functions,
even separately compiled functions. Register variables are (if possible) stored in the fast regis-
ters of the machine; like automatic variables they are local to each block and disappear on exit
from the block.

C supports several fundamental types of objects:

Objects declared as characters (char) are large enough to store any member of the
implementation’s character set, and if a genuine character is stored in a character variable, its
value is equivalent to the integer code for that character. Other quantities may be stored into
character variables, but the implementation is machine-dependent. On the PDP-11, characters
are stored as signed 8-bit integers, and the character set is ASCII.

Up to three sizes of integer, declared short int, int, and long int are available. Longer
integers provide no less storage than shorter ones, but the implementation may make either
short integers, or long integers, or both equivalent to plain integers. ‘Plain’ integers have the
natural size suggested by the host machine architecture; the other sizes are provided to meet
special needs. On the PDP-ll, short and plain integers are both represented in 16-bit 2’s com-
plement notation. Long integers are 32-bit 2’s complement.

Unsigned integers, declared unsigned, obey the laws of arithmetic modulo 2" where n is
the number of bits in the representation. (16 on the PDP-11; long and short unsigned quantities

-4-

are not supported.)

Single precision oating point (float) quantities, on the PDP-ll, have magnitude in the
range approximately 10*“ or 0; their precision is 24 bits or about seven decimal digits.

Double-precision oating-point (double) quantities on the PDP-11 have the same range as
floats and a precision of 56 bits or about 17 decimal digits. Some implementations may make
float and double synonymous.

Because objects of these types can usefully be interpreted as numbers, they will be
referred to as arithmetic types. Types char and int of all sizes will collectively be called integral
types. Float and double will collectively be called oating types.

Besides the fundamental arithmetic types there is a conceptually innite class of derived
types constructed from the fundamental types in the following ways:

arrays of objects of most types;

mctions which return objects of a given type;

pointers to objects of a given type;

structures containing a sequence of objects of various types;

unions capable of containing any one of several objects of various types.

In general these methods of constructing objects can be applied recursively.

5. Objects and lvalues ’

An object is a manipulatable region of storage; an Ivalue is an expression referring to an object.
An obvious example of an lvalue expression is an identier. There are operators which yield
lvalues: for example, if E is an expression of pointer type, then *E is an lvalue expression refer-
ring to the object to which E points. The name ‘lvalue’ comes from the assignment expression
‘E 1 = E2’ in which the left operand El must be an lvalue expression. The discussion of each
operator below indicates whether it expects Ivalue operands and whether it yields an Ivalue.

6. Conversions
A number of operators may, depending on their operands, cause conversion of the value of an
operand from one type to another. This section explains the result to be expected from such
conversions. §6.6 summarizes the conversions demanded by most ordinary operators; it will be
supplemented as required by the discussion of each operator.

6.1 Characters and integers
A character or a short integer may be used wherever an integer may be used. In all cases the
value is converted to an integer. Conversion of a short integer always involves sign extension;
short integers are signed quantities. Whether or not sign-extension occurs for characters is
machine dependent, but it is guaranteed that a member of the standard character set is non-
negative. On the PDP-ll, character variables range in value from.— 128 to 127; a character con-
stant specied using an octal escape also suffers sign extension and may appear negative, for
example ‘ '\214' ’.

When a longer integer is converted to a shorter or to a char, it is truncated on the left.

6.2 Float and double _ .

All oating arithmetic in C is carried out in double-precision; whenever a float appears in an
expression it is lengthened to double by zero-padding its fraction. When a double must be
converted to float, for example by an assignment, the double is rounded before truncation to
float length.

-5-

6.3 Floating and integral
Conversions of oating values to integral type tend to be rather machine-dependent. On the
PDP-ll, truncation is towards 0. The result is undened if the value will not t in the space
provided.

Conversions of integral values to oating type are well behaved. Some loss of precision
occurs if the destination lacks sufcient bits.

6.4 Pointers and integers
An integer or long integer may be added to or subtracted from a pointer; in such a case the rst
is converted as specied in the discussion of the addition operator.

Two pointers to objects of the same type may be subtracted; in this case the result is con-
verted to an integer as specied in the discussion of the subtraction operator.

6.5 Unsigned
Whenever an unsigned integer and a plain integer are combined, the plain integer is converted
to unsigned and the result is unsigned. The value (on the PDP-11) is the least unsigned integer
congruent to the signed integer (modulo 21°). Because of the 2’s complement notation, this
conversion is conceptual and there is no actual change in the bit pattern.

When an unsigned integer is converted to long, the value of the result is the same numer-
ically as that of the unsigned integer. Thus the conversion amounts to padding with zeros on
the left.

6.6 Arithmetic conversions
A great many operators cause conversions and yield result types in a similar way. This pattern
will be called the ‘usual arithmetic conversions.’

First, any operands of type char or short are converted to int, and any of type float are
converted to double.

Then, if either operand is double, the other is converted to double and that is the type of
the result.

Otherwise, if either operand is long, the other is converted to long and that is the type of
the result.

Otherwise, if either operand is unsigned, the other is converted to unsigned and that is
the type of the result.

Otherwise, both operands must be int, and that is the type of the result.

7. Expressions '

The precedence of expression operators is the same as the order of the major subsections of
this section (highest precedence rst). Thus the expressions referred to as the operands of +
(§7.4) are those expressions dened in §§7.l-7.3. Within each subsection, the operators have
the same precedence. Left- or right-associativity is specied in each subsection for the opera-
tors discussed therein. The precedence and associativity of all the expression operators is sum-
marized in the collected grammar.

Otherwise the order of evaluation of expressions is undened. In particular the compiler
considers itself free to compute subexpressions in the order it believes most efficient, even if
the subexpressions involve side effects. Expressions involving a commutative and associative
operator may be rearrangec_Larbitrarily, even in the presence of parentheses; to force a particular
order of evaluation an explicit temporary must be used.

-5-

7.1 Primary expressions
Primary expressions involving ., —>, subscripting, and function calls group left to right.

primary-expression:
identier
constant
string
(expression)
primary-expression [expression]
primary-expression (expression-listo)
primary-[value . identier
primary-expression —-> identier

expression-list:
expression
expression-list , expression

An identier is a primary expression, provided it has been suitably declared as discussed below.
Its type is specied by itsdeclaration. However, if the type of the identier is ‘array of ...’,
then the value of the identier-expression is a pointer to the rst object in the array, and the
type of the expression is ‘pointer to . . .’. Moreover, an array identier is not an lvalue expres-
sion. Likewise, an identier which is declared ‘function returning ...’, when used except in the
function-name position of a call, is converted to ‘pointer to function returning ...’.

A constant is a primary expression. Its type may be int, long, or double depending on its
form.

A string is a primary expression. Its type is originally ‘array of char’; but following the
same rule given above for identiers, this is modied to ‘pointer to char’ and the result is a

pointer to the rst character in the string. (There is an exception in certain initializers; see

§8.6.)

A parenthesized expression is a primary expression whose type and value are identical to
those of the unadorned expression. The presence of parentheses does not affect whether the
expression is an lvalue.

A primary expression followed by an expression in square brackets is a primary expres-
sion. The intuitive meaning is that of a subscript. Usually,' the primary expression has type
‘pointer to ...’, the subscript expression is int, and the type of the result is ‘ . . . ’. The expres-
sion ‘E1[E2]’ is identical (by denition) to ‘*((El) + (E2))’. All the clues needed to
understand this notation are contained in this section together with the discussions in §§ 7.1,
7.2, and 7.4 on identiers, *, and + respectively; §l4.3 below summarizes the implications.

A function call is a primary expression followed by parentheses containing a possibly
empty, comma-separated list of expressions which constitute the actual arguments to the func-
tion. The primary expression must be of type ‘function returning ...’, and the result of the
function call is of type ‘ . . . ’. As indicated below, a hitherto unseen identier followed immedi-
ately by a left parenthesis is contextually declared to represent a function returning an integer;
thus in the most common case, integer-valued functions need not be declared.

Any actual arguments of type float are converted to double before the call; any of type
char or short are converted to int.

In preparing for the call to a function, a copy is made of each actual parameter; thus. all
argument-passing in C is strictly by value. A function may change the values of its formal
parameters, but these changes cannot affect the values of the actual parameters. On the other
hand, it is possible to pass a pointer on the understanding that the function may change the
value of the object to which the pointer points. The order of evaluation of arguments is
undened by the language; take note that the various compilers differ.

Recursive calls to any function are permitted.

-7-

A primary expression followed by a dot followed by an identier is an expression. The
rst expression must be an lvalue naming a structure or union, and the identier must name a
member of the structure or union. The result is an lvalue referring to the named member of
the structure or union.

A primary expression followed by an arrow (built from a ‘-’ and a ‘>’) followed by an
identier is an expression. The rst expression must be a pointer to a structure or a union and
the identier must name a member of that structure or union. The result is an lvalue referring
to the named member of the structure or union to which the pointer expression points.

Thus the expression ‘E1—>MOS’ is the same as ‘(*El).MOS‘. Structures and unions are
discussed in §8.5. The rules given here for the use of structures and unions are not enforced
strictly, in order to allow an escape from the typing mechanism. See §l4.l.

7.2 Unary operators
Expressions with unary operators group right-to-left.

unary-expression:
* expression
& lvalue
— expression
! expression
~ expression
+ + lvalue
—— lvalue
lvalue + +
lvalue ——

(type-name) expression
sizeof expression
sizeof (type-name)

The unary * operator means indirection: the expression must be a pointer, and the result is an
lvalue referring to the object to which the expression points. If the type of the expression is
‘pointer to ...’, the type of the result is ‘ . . . ’.

The result of the unary & operator is a pointer to the object referred to by the lvalue. If
the type of the lvalue is ‘ . . . ’, the type of the result is ‘pointer to .. .’.

The result of the unary — operatoris the negative of its operand. The usual arithmetic
conversions are performed. The negative of an unsigned quantity is computed by subtracting
its value from 2", where n is 16 on the PDP-ll.

The result of the logical negation operator ! is 1 if the value of its operand is 0, 0 if the
value of its operand is non-zero. The type of the result is int. It is applicable to any arithmetic
type or to pointers.

The ~ operator yields the one’s complement of its operand. The usual arithmetic conver-
sions are performed. The type of the operand must be integral.

The object referred to by the lvalue operand of prex ‘+ +’ is incremented. The value is
the new value of the operand, but is not an lvalue. The expression ‘++a’ is equivalent to
‘(a += 1)’. See the discussions of addition (§7.4) and assignment operators (§7.l4) for infor-
mation on conversions.

The lvalue operand of prex ‘——’ is decremented analogously to the + + operator.

When postx ‘+ +’ is applied to an lvalue the result is the value of the object referred to
by the lvalue. After the result is noted, the object is incremented in the same manner as for
the prex + + operator. The type of the result is the same as the type of the lvalue expres-
sion.

When postx ‘——’ is applied to an lvalue the result is the value of the object referred to
by the lvalue. After the result is noted, the object is decremented in the manner as for the

-3.

prex ——- operator. The type of the result is the same as the type of the lvalue expression.
An expression preceded by the parenthesized name of a data type causes conversion of

the value of the expression to the named type. The construction of type names is described in
§8.7.

The sizeof operator yields the size, in bytes, of its operand. (A byte is undened by the
language except in terms of the value of sizeof. However in all existing implementations a
byte is the space required to hold a char.) When applied to an array, the result is the total
number of bytes in the array. The size is determined from the declarations of the objects in the
expression. This expression is semantically an integer constant and may be used anywhere a
constant is required. Its major use is in communication with routines like storage allocators and
I/O systems.

The sizeof operator may also be applied to a parenthesized type name. In that case it
yields the size, in bytes, of an object of the indicated type.

The construction ‘sizeof(type)’ is taken to be a unit, so the expression ‘sizeof(type)-2’ is
the same as ‘(sizeof(type))—2’.

7.3 Multiplicative operators
The multiplicative operators *, /, and % group left-to-right. The usual arithmetic conversions
are performed.

mulnplicarive-expression:
expression * expression
expression / expression
expression % expression

The binary * operator indicates multiplication. The * operator is associative and expressions
with several multiplications at the same level may be rearranged.

The binary / operator indicates division. When positive integers are divided truncation is
toward 0, but the form of truncation is machine-dependent if either operand is negative. In all
cases it is true that (a/b)*b + a%b = a. On the PDP-ll, the remainder has the same sign as
the dividend.

The binary % operator yields the remainder from the division of the rst expression by
the second. The usual arithmetic conversions are performed. On the PDP-11, the remainder
has the same sign as the dividend. The operands must not be oating.

7.4 Additive operators
The additive operators + and — group left-to-right. The usual arithmetic conversions are per-
formed. There are some additional type possibilities for each operator.

additive-expression:
expression + expression
expression — expression

The result of the ‘+’ operator is the sum of the operands. A pointer to an object in an array
and a value of any integral type may be added. The latter is in all cases converted to an address
offset by multiplying it by the length of the object to which the pointer points. The result is a
pointer of the same type as the original pointer, and which points to another object in the same
array, appropriately offset from the original object. Thus if P is a pointer to an object in‘ an
array, the expression ‘P+l’ is a pointer to the next object in the array.

No further type combinations are allowed.

The + operator is associative and expressions with several additions at the same level
may be rearranged.

The result of the ‘—’ operator is the difference of the operands. The usual arithmetic
conversions are performed. Additionally, a value of any integral type may be subtracted from a

- 9 .

pointer, and then the same conversions as for addition apply.
If two pointers to objects of the same type are subtracted, the result is converted (by divi-

sion by the length of the object) to an int representing the number of objects separating the
pointed-to objects.’ This conversion will in general give unexpected resultsvunless the pointers
point to objects in the same array, since pointers, even to objects of the same type, do not
necessarily differ by a multiple of the object-length.

7.5 Shift operators
The shift operators < < and >> group left-to-right. Both perform the usual arithmetic
conversions on their operands, each of which must be integral. Then the right operand is con-
verted to int; the type of the result is that of the left operand. The result is undened if the
right operand is negative or larger than the number of bits in the object,

shift-expression:
expression < < expression
expression > > expression

The value of ‘El < <E2’ is E1 (interpreted as a bit pattern) left-shifted E2 bits; vacated bits are
0-lled. The value of ‘El > >E2’ is E1 right-shifted E2 bit positions. The shift is guaranteed
to be logical (0-ll) if E1 is unsigned; otherwise it may be (and is, on. the PDP-ll) arithmetic
(ll by a copy of the sign bit).

7.6 Relational operators
The relational operators group left-to-right, but this fact is not very useful; ‘a<b<c’ does not
mean what it seems to.

relational-expression:
expression < expression
expression > expression
expression < = expression
expression > = expression

The operators < (less than), > (greater than), <= (less than or equal to) and >= (greater
than or equal to) all yield 0 if the specied relation is false and 1 if it is true. The type of the
result is int. The usual arithmetic conversions are performed. Two pointers may be compared,
and the result depends on the relative locations in the address space of the pointed-to objects.
Pointer comparison is portable only when the pointers point to objects in the same array.

7.7 Equality operators

equality-expression:
expression = == expression
expression l= expression

The = = (equal to) and the != (not equal to) operators are exactly analogous to the relational
operators except for their lower precedence. (Thus ‘a<b == c<d’ is 1 whenever a<b and
c<d have the same truth-value).

A pointer may be compared to an integer, but the result is machine dependent unless the
integer is the constant 0. A pointer to which 0 has been assigned is guaranteed not to point to
any object, and will appear to be equal to 0; in conventional usage, such a pointer is considered
to be null.

7.8 Bitwise and operator

and-expression:
expression & expression

-10-

The & operator is associative and expressions involving & may be rearranged. The usual arith-
metic conversions are performed; the result is the bit-wise ‘and’ function of the operands. The
operator applies only to integral operands.

7.9 Bitwise exclusive or operator

exclusive-or-expression:
expression A expression

The ~ operator is associative and expressions involving ~ may be rearranged. The usual arith-
metic conversions are performed; the result is is the bit-wise ‘exclusive or’ function of the
operands. The operator applies only to integral operands.

7.10 Bitwise inclusive or operator

inclusive-or-expression:
expression I expression

The I operator is associative and expressions with I may be rearranged. The usual arithmetic
conversions are performed; the result is the bit-wise ‘inclusive or’ function of its operands.
The operator applies only to integral operands.

7.11 Logical and operator

logical-and-expression:
expression && expression

The && operator groups left-to-right. It returns 1 if both its operands are non-zero, 0 other-
wise. Unlike &, && guarantees left-to-right evaluation; moreover the second operand is not
evaluated if the rst operand is 0.

The operands need not have the same type, but each must have one of the fundamental
types or be a pointer. The result is always int.

7.12 Logical or operator

logical-or-expression:
expression II expression

The II operator groups left-to-right. It returns 1 if either of its operands is non-zero, and 0 oth-
erwise. Unlike I, II guarantees left-to-right evaluation; moreover, the second operand is not
evaluated if the value of the rst operand is non-zero.

The operands need not have the same type, but each must have one of the fundamental
types or be a pointer. The result is always int.

7.13 Conditional operator

conditional-expression:
expression ? expression: expression

Conditional expressions group right-to-left. The rst expression is evaluated and if it is non-
zero, the result is the value of the secondexpression, otherwise that of third expression. If
possible, the usual arithmetic conversions are performed to bring the second and third expres-
sions to a common type; otherwise, if both are pointers of the same type, the result has the
common type; otherwise, one must be a pointer and the other the constant 0, and the result
has the type of the pointer. Only one of the second and third expressions is evaluated.

-11-

7.14 Assignment operators
There are a number of assignment operators, all of which group right-to-left. All require an
lvalue as their left operand, and the type of an assignment expression is that of its left operand.
The value is the value stored in the left operand after the assignment has taken place. The two
parts of a compound assignment operator are separate tokens.

assignment-expression:
[value = expression
[value + = expression
[value — = expression
[value * = expression
[value / = expression
[value % = expression
[value > > = expression
[value < < = expression
[value & = expression
[value A = expression
Ivaluel = expression

Notice that the"-representation of the compound assignment operators has changed; formerly the
‘=’ came rst and the other operator came second (without any space). The compiler contin-
ues to accept the previous notation.

In the simple assignment with ‘=’, the value of the expression replaces that of the object
referred to by the lvalue. If both operands have arithmetic type, the right operand is converted
to the type of the left preparatory to the assignment.

The behavior of an expression of the form ‘El op = E2’ may be inferred by taking it as

equivalent to ‘El = E1 op (E2)’; however, E1 is evaluated only once. In += and —=, the
left operand may be a pointer, in which case the (integral) right operand is converted as
explained in §7.4; all right operands and all non-pointer left operands must have arithmetic
type.

The compiler currently allows a pointer to be assigned to an integer, an integer to a
pointer, and a pointer to a pointer of another type. The assignment is a pure copy operation,
with no conversion. This usage is nonportable, and may produce pointers which cause address-
ing exceptionsiwhen used. However, it is guaranteed that assignment of the constant 0 to a
pointer will produce a null pointer distinguishable from a pointer to any object.

7.15 Comma operator

comma-expression:
expression , expression

A pair of expressions separated by a comma is evaluated left-to-right and the value of the left
expression is discarded. The type and value of the result are the type and value of the right
operand. This operator groups left-to-right. In contexts where comma is given a special mean-
ing, for example in a list of actual arguments to functions (§7.l) and lists of initializers (§8.6),
the comma operator as described in this section can only appear in parentheses; for example,
‘f(a, (t = 3, t+2), c)’ has three arguments, the second of which has the value 5.

8. Declarations '

Declarations are used to specify the interpretation which C gives to each identier; they do not
necessarily reserve storage associated with the identier. Declarations have the form

declaration:
decl-speciers declarator-listop, ;

The declarators in the declarator-list contain the identiers being declared. The decl-speciers
consist of a sequence of type and storage class speciers.

-12-

decl-speciers:
type-specier decl-speciers”,
sc-specier decl-speciers

OP!

The list must be self-consistent in a way described below.

8.1 Storage class speciers
The sc-speciers are:

sc-specier:
auto
static
extern
register
typedef ‘

The typedef specier does not reserve storage and is called a ‘storage class specier’ only for
syntactic convenience; it is discussed in §8.8.

The meanings of the various storage classes were discussed in §4.

The auto, static, and register declarations also serve as denitions in that they cause an
appropriate amount of storage to be reserved. In the extern case there must be an external
denition (§10) for the given identiers somewhere outside the function in which they are
declared.

A register declaration is best thought of as an auto declaration, together with a hint to
the compiler that the variables declared will be heavily used. Only the rst few (three, for the
PDP-ll) such declarations are effective. Moreover, only variables of certain types will be stored
in registers; on the PDP-11, they are int, char, or pointer. One restriction applies to register
variables: the address-of operator & cannot be applied to them. Smaller, faster programs can be
expected if register declarations are used appropriately, but future developments may render
them unnecessary.

At most one sc-specier may be given in a declaration. If the sc-specier is missing from
a declaration, it is taken to be auto inside a function, extern outside. Exception: functions are
always extern.

8.2 Type specifiers
The type-speciers are

type-specier:
char
short
int
long
unsigned’
float
double
srrucr-or-union-specler
rypedename i

The words long, short, and unsigned may be thought of as adjectives; the following combina-
tions are acceptable (in any order).

short int
long int
unsigned int
long float

The meaning of the last is the same as double. Otherwise, at most one type-specier may be
given in a declaration. If the type-specier is missing from a declaration, it is taken to be int.

-13-

Speciers for structures and unions are discussed in §8.5; declarations with typedef names
are discussed in §8.8.

8.3 Declarators
The declarator-list appearing in a declaration is a comma-separated sequence of ‘declarators,
each of which may have an initializer.

declarator-list:
init-declarator
init-declarator, declarator-Iisr

inir-declarator:
declarator inirializerop,

Initializers are discussed in §8.6. The speciers in the declaration indicate the type and storage
class of the objects to which the declarators refer. Declarators have the syntax:

declarator:
-

identler
(declarator)
* declarator
declarator ()

declarator [constant-expressionwl

The grouping is the same as in expressions.

8.4 Meaning of declarators
Each declarator is taken to be an assertion that when a construction of the same form as the
declarator appears in an expression, it yields an object of the indicated type and storage class.
Each declarator contains exactly one identier; it is this identier that is declared.

If an unadorned identier appears as a declarator, then it has the type indicated by the
specier heading the declaration.

A declarator in parentheses is identical to the unadorned declarator, but the binding of
complex declarators may be altered by parentheses. See the examples below.

If a declarator has the form i

* D

for D a declarator, then the contained identier has the type ‘pointer to ...’, where ‘ . . . ’ is the
type which the identier would have had if the declarator had been simply D.

If a declarator has the form

D()
then the contained identier has the type ‘function returning ...’, where ‘ . . . ’ is the type which
the identier would have had if the declarator had been simply D.

A declarator may have the form

D[constant-expression]

01'

Dl 1

Such declarators make the contained identier have type ‘array.’ If the unadorned declarator D
would specify a non-array of type ‘. . .’, then the declarator ‘D[i]’ yields a 1-dimensional array
with rank i of objects of type ‘...’. If the unadorned declarator D would specify an n-
dimensional array with rank i1><i2>< - - - ><i,,, then the declarator D[i,,+1] yields an (n+1)-
dimensional array with rank ilxizx - - - ><i,,><i,,+1.

-14-

In the rst case the constant expression is an expression whose value is determinable at
compile time, and whose type is int. (Constant expressions are dened precisely in §l5.) The
constant expression of an array declarator may be missing only for the rst dimension. This
notation is useful when the array is external and the actual declaration, which allocates storage,
is given elsewhere. The constant-expression may also be omitted when the declarator is fol-
lowed by initialization. In this case the size is calculated from the number of initial elements
supplied.

An array may be constructed from one of the basic types, from a pointer, from a structure
or union, or from another array (to generate a multi-dimensional array).

Not all the possibilities allowed by the syntax above are actually permitted. The restric-
tions are as follows: functions may not return arrays, structures or functions, although they may
return pointers to such things; there are no arrays of functions, although there may be arrays of
pointers to functions. Likewise a structure may not contain a function, but it may contain a

pointer to a function.

As an example, the declaration

int i, ~ip, f(), *fip(). (*pfi) ();

declares an integer i, a pointer ip to an integer, a function freturning an integer, a function p
returning a pointer to an integer, and a pointer p to a function which returns an integer. It is

especially useful to compare the last two. The binding of ‘*p()’ is ‘*(p())’, so that the
declaration suggests, and the same construction in an expression requires, the calling of a func-
tion p, and then using indirection through the (pointer) result to yield an integer. In the
declarator ‘(*p) ()’, the extra parentheses are necessary, as they are also in an expression, to
indicate that indirection through a pointer to a function yields a function, which is then called.

As another example,

float fa[17]. *afp[17];

declares an array of float numbers and an array of pointers to float numbers. Finally,

static int x3d[3][5l I71;

declares a static three-dimensional array of integers, with rank 3><5><7. In complete detail, x3d
is an array of three items: each item is an array of ve arrays; each of the latter arrays is an
array of seven integers. Any of the expressions ‘x3d’, ‘x3d[i]’, ‘x3d[i][j]’, ‘x3d[il[j][k]’
may reasonably appear in an expression. The rst three have type ‘array’, the last has type int.

8.5 Structure and union declarations
A structure is an object consisting of a sequence of named members. Each member may have
any type. A union is an object which may, at a given time, contain any one of several
members. Structure and union speciers have the same form.

structure-onunion-specier:
struct-or-union { struct-decl-list}
struct-or-union identier { struct-decl-list}
struct-or-union identier

struct-or-union:
struct
union

The struct-decl-list is a sequence of declarations for the members of the structure or union:

struct-decl-list:
struct-declaration
struct-declaration struct-decl-list

-15-

struct-declaration:
type-specier struct-declarator-list ;

struct-declarator-list:
struct-declarator
struct-declarator, struct-declarator-list

In the usual case, a struct-declarator is just a declarator for a member of a structure or union.
A structure member may also consist of a specied number of bits. Such a member is also
called a eld; its length is set o' from the eld name by a colon.

struct-declaralor:
declarator
declarator : constant-expression
: constant-expression

Within a structure, the objects declared have addresses which increase as their declarations are
read left-to-right. Each non-eld member of a structure begins on an addressing boundary
appropriate to its type. On the PDP-ll the only requirement is that non-characters begin on a

word boundary; therefore, there may be 1-byte, unnamed holes in a structure. Field members
are packed into machine integers; they do not straddle words. A eld which does not t into
the space remaining in a word is put into the next word. No eld may be wider than a word.
On the PDP-1 1, elds are assigned right-to-left.

A struct-declarator with no declarator, only a colon and a width, indicates an unnamed
eld useful for padding to conform to externally-imposed layouts. As a special case, an
unnamed eld with a width of 0 species alignment of the next eld at a word boundary. The
‘next eld’ presumably is a eld, not an ordinary structure member, because in the latter case
the alignment would have been automatic.

The language does not restrict the types of things that are declared as elds, but imple-
mentations are not required to support any but integer elds. Moreover, even int elds may be
considered to be unsigned. On the PDP-ll, elds are not signed and have only integer values.

A union may be thought of as ah structure all of whose members begin at offset 0 and
whose size is sufficient to contain any of its members. At most one of the members can be
stored in a union at any time.

A structure or union specier of the second form, that is, one of
struct identier { struct-decl-list}
union identler { struct-decl-list}

declares the identier to be the structure tag (or union tag) of the structure specied by the list.
A subsequent declaration may then use the third form of specier, one of

struct identier
union identifier

Structure tags allow denition of self-referential structures; they also permit the long part of the
declaration to be given once and used several times. It is however absurd to declare a structure
or union which contains an instance of itself, as distinct from a pointer to an instance of itself.

The names of members and tags may be the same as ordinary variables. However, names
of tags and members must be mutually distinct. '

Two structures may share a common initial sequence of members; that is, the same
member may appear in two different structures if it has the same type in both and if all previ-
ous members are the same in both. (Actually, the compiler checks only that a name in two
different structures has the same type and offset in both, but if preceding members ‘differ the
construction is nonportable.)

A simple example of a structure declaration is

-16-~

struct tnode {

char tword[20l;
int count;
struct tnode ~=left;

struct tnode rright;
l:

which contains an array of 20 characters, an integer, and two pointers to similar structures.
Once this declaration has been given, the following declaration makes sense:

struct tnode s, rsp;

which declares s to be a structure of the given sort and sp to be a pointer to a structure of the
given sort. With these declarations, the expression

sp—>count

refers to the count eld of the structure to which sp points;

s.left

refers to the left subtree pointer of the structure s. Finally,

s.right—>tword[0l

refers to the rst character of the rword member of the right subtree of s.

8.6 Initialization
A declarator may specify an initial value for the identier being declared. The initializer is pre-
ceded by ‘=’, and consists of an expression or a list of values nested in braces. ‘

initializer.‘
= expression
== { initializer-list}
= { initializer-list , }

initializer-list:
expression
initializer-list, initializer-list
{ initializer-list}

The ‘=’ is a new addition to the syntax, intended to alleviate potential ambiguities. The
current compiler allows it to be omitted when the rest of the initializer is a very simple expres-
sion (just a name, string, or constant) or when the rest of the initializer is enclosed in braces.

All the expressions in an initializer for a static or external variable must be constant
expressions, which are described in §l5, or expressions which reduce to the address of a previ-
ously declared variable, possibly offset by a constant expression. Automatic or register vari-
ables may be initialized by arbitrary expressions involving previously declared variables.

Static and external variables which are not initialized are guaranteed to start 0' as 0;
automatic and register variables which are not initialized are guaranteed to start off as garbage.

When an initializer applies to a scalar (a pointer or an object of arithmetic type), it con-
sists of a single expression, perhaps in braces. The initial value of the object is taken from the
expression; the same conversions as for assignment are performed.

When the declared variable is an aggregate (a structure or array) then the initializer con-
sists of a brace-enclosed, comma-separated list of initializers for the members of the aggregate,
written in increasing subscript or member order. If the aggregate contains subaggregates, this
rule applies recursively to the members of the aggregate. If there are fewer initializers in the
list than there are members of the aggregate, then the aggregate is padded with 0’s. It is not
permitted to initialize unions or automatic aggregates. Currently, the PDP-ll compiler also

-17-

forbids initializing elds in structures.

Braces may be elided as follows. If the initializer begins with a left brace, then the
succeding comma-separated list of initializers initialize the members of the aggregate; it is
erroneous for there to be more initializers than members. If, however, the initializer does not
begin with a left brace, then only enough elements from the list are taken to account for the
members of the aggregate; any remaining members are left to initialize the next member of the
aggregate of which the current aggregate is a part.

A nal abbreviation allows a char array to be initialized by a string. In this case succes-
sive members of the string initialize the members of the array.

For example,

intxll -= { 1,3,5};
declares and initializes x as a 1-dimensional array which has three members, since no size was
specied and there are three initializers.

nm 1{

Iii?“

$9.".-"5'

$11.4“!-°'cT5'

~|o>u1u

}; '

is a completely-bracketed initialization: 1, 3, and 5 initialize the rst row of the array y[0],
namely y[0][0], y[0][l], and y[0] [2]. Likewise the next two lines initialize ylll and y[2]. The
initializer ends early and therefore y[3] is initialized with 0. Precisely the same effect could
have been achieved by

float y[4][3] -= {

1,3,5, 2,4,6,3,5, 7,

The initializer for y begins with a left brace, but that for y[0] does not, therefore 3 elements
from the list are used. Likewise the next three are taken successively for y[l] and y[2]. Also,

rmtmm={ ‘

{1}.{2}.{3}.l4l

initializes the rst column of y (regarded as ea two-dimensional array) and leaves the rest O.

Finally,

char msg[] = "Syntax error on line %s\n";

shows a character array whose members are initialized with a string.

8.7 Type names -

In two contexts (to specify type conversions explicitly, and as an argument of sizeof) it is
desired to supply the name of a data type. This is accomplished using a ‘type name,’ which in
essence is a declaration for an object of that type which omits the name of the object.

type-name: »

type-specler abstract-declarator

-18-

abstract-declarator:

emPD’
(abstract-declarator)
* abstract-dec/arator
abstract-declarator (i
abstract-declarator [constant-expression pl]0

To avoid ambiguity, in the construction

(abstract-declarator)

the abstract-declarator is required to be nonempty. Under this restriction, it is possible to iden-
tify uniquely the location in the abstract-declarator where the identier would appear if the con-
struction were a declarator in a declaration. The named type is then the same as the type of the
hypothetical identier. For example,

int
int *
int *[3]
int (*)[31

name respectively the types ‘integer,’ ‘pointer to integer,’ ‘array of 3 pointers to integers,’ and
‘pointer to an array of 3 integers.’ As another example,

int i;

sin((double) i);

calls the sin routine (which accepts a double argument) with an argument appropriately con-
verted.

8.8 Typedef
Declarations whose ‘storage class’ is typedef do not dene storage, but instead dene
identiers which can be used later as if they were ‘type keywords naming fundamental or
derived types. Within the scope of a declaration involving typedef, each of the identiers
appearing as part of any declarators therein become syntactically equivalent to type keywords
naming the type associated with the identiers in the way described in §8.4.

typedef-name:
identifier

For example, after

typedef int MILES, *KL|CKSP;
typedef struct { double re, im;} complex;

the constructions

MILES distance;
extern KLICKSP metricp;
complex z, *zp;

are all legal declarations; the type of distance is ‘int’, that of metricp is ‘pointer to int,‘ and that
of z is the specied structure. Zp is a pointer to such a structure.

Typedef does not introduce brand new types, only synonyms for types which could be
specied in another way. Thus in the example above distance is considered to have exactly the
same type as any other int variable.

.19-

9. Statements
Except as indicated, statements are executed in sequence.

9.1 Expression statement

Most statements are expression statements, which have the form
expression ;

Usually expression statements are assignments or function calls.

9.2 Compound statement, or block
So that several statements can be used where one is expected, the compound statement (also,
and equivalently, called ‘block’) is provided:

compound-statement:
{ declaration-listop, statement-list”, }

declaration-list:
declaration
declaration declaration-list

statement-list:
statement
statement statement-list

If any of the identiers in the declaration-list were previously declared, the outer declaration is
pushed down for the duration of the block, at which time it resumes its force.

Any initializations of auto or register variables are performed each time the block is
entered at the top. It is currently possible (but a bad practice) to transfer into a block; in that
case the initializations are not performed. Initializations of static variables are performed only
once when the program begins execution. Inside a block, external declarations do not reserve
storage so initialization is not permitted.

9.3 Conditional statement
The two forms of the conditional statement are

if (expression) statement
if (expression) statement else statement

In both cases the expression is evaluated and if it is non-zero, the rst substatement is exe-
cuted. In the second case the second substatement is executed if the expression is 0. As usual
the ‘else’ ambiguity is resolved by connecting an else with the last encountered elseless if.

9.4 While statement
The while statement has the form

while (expression) statement

The substatement is executed repeatedly so long as the value of the expression remains non-
zero. The test takes place before each execution of the statement.

9.5 Do statement
The do statement has the form

do statement while (expression) ;

The substatement is executed repeatedly until the value of the expression becomes zero. The
test takes place after each execution of the statement.

-20-

9.6 For statement

The for statement has the form
for (expression-lop, ; expression-2”, ; expression-30”) statement

This statement is equivalent to

expression-I;
while (expression-2) {

statement
expression-3 ;

Thus the rst expression species initialization for the loop; the second species a test, made
before each iteration, such that the loop is exited when the expression becomes 0; the third
expression typically species an incrementation which is performed after each iteration.

Any or all of the expressions may be dropped. A missing expression-2 makes the implied
while clause equivalent to ‘while(1)’; other missing expressions are simply dropped from the
expansion above.

9.7 Switch statement
The switch statement causes control to be transferred to one of several statements depending
on the value of an expression. It has the form

switch (expression) statement

The usual arithmetic conversion is performed on the expression, but the result must be int.
The statement is typically compound. Any statement within the statement may be labelled with
one or more case prexes as follows:

C859 COHSMIU-€XpI'€SSI'0n I

where the constant expression must be int. No two of the case constants in the same switch
may have the same value. Constant expressions are precisely dened in §15.

There may also be at most one statement prex of the form
default :

When the switch statement is executed, its expression is evaluated and compared with each
case constant. If one of the case constants is equal to the value of the expression, control is
passed to the statement following the matched case prex. If no case constant matches the
expression, and if there is a default prex, control passes to the prexed statement. If no case
matches and if there is no default then none of the statements in the switch is executed.

Case and default prexes in themselves do not alter the ow of control, which continues
unimpeded across such prexes. To exit from a switch, see break, §9.8.

Usually the statement that is the subject of a switch is compound. Declarations may
appear at the head of this statement, initializations of automatic or register variables are
ineffective.

9.8 Break statement
The statement

break ;

causes termination of the smallest enclosing while, do, tor, or switch statement; control passes
to the statement following the terminated statement.

-2]-

9.9 Continue statement
The statement

continue ;

causes control to pass to the loop-continuation portion of the smallest enclosing while, do, or
for statement; that is to the end of the loop. More precisely, in each of the statements

while(...){ do{ for(...){
con-tin: ; contin: ; contin: ;

} }while(...); } '

a continue is equivalent to ‘goto contin’. (Following the ‘continz’ is a null statement, §9.l3.)

9.10 Return statement
A function returns to its caller by means of the return statement, which has one of the forms

return ;

return expression ;

In the rst case the returned value is undened. In the seeond case, the value of the expres-
sion is returned to the caller of the function. If required, the expression is converted, as if by
assignment, to the type of the function in which it appears. Flowing off the end of a function is
equivalent to a return with no returned value.

9.11 Goto statement
Control may be transferred unconditionally by means of the statement

goto identier ;

The identier must be a label (§9.l2) located in the current function. Previous versions of C
had an incompletely implemented notion of label variable, which has been withdrawn.

9.12 Labelled statement
Any statement may be preceded by label prexes of the form

identier :

which serve to declare the identier as a label. The only use of a label is as a target of a goto.
The scope of a label is the current function, excluding any sub-blocks in which the same
identier has been redeclared. See §l 1.

9.13 Null statement
The null statement has the form

A null statement is useful to carry a label just before the ‘}’ of a compound statement or to
supply a null body to a looping statement such as while.

10. External definitions
A C program consists of a sequence of external denitions. An external denition declares an
identier to have storage class extern (by default) or perhaps static, and a specied type. The
type-specier (§8.2) may also be empty, in which case the type is taken to be int. The scope of
external denitions persists to the end of the le in which they are declared just as the effect of
declarations persists to the end of a block. The syntax of external denitions is the same as
that of all declarations, except that only at this level may the code for functions be given.

-22-

10.1 External function definitions
Function denitions have the form

mction-denition:
decl-speciers”, mction-declarator mction-body

The only sc-speciers allowed among the decl-speciers are extern or static; See §ll.2 for the
distinction between them. A function declarator is similar to a declarator for a ‘function return-
ing ...’ except that it lists the formal parameters of the function being dened.

mction-declararor:
declarator (parameter-list N)0

parameter-list:
identier
identier , parameter-list

The function-body has the form
mction-body:

declaration-list compound-statement

The identiers in the parameter list, and only those identiers, may be declared in the declara-
tion list. Any identiers whose type is not given are taken to be int. The only storage class
which may be specied is register; if it is specied, the corresponding actual parameter will be
copied, if possible, into a register at the outset of the function.

A simple example of a complete function denition is

int max(a, b, c)
int a, b, c;

intm;
m = (a>b)? azb;
return(m>c? mzc);

}

Here ‘int’ is the type-specier; ‘max(a, b, c)’ is the function-declarator; ‘int a, b, c;’ is the
declaration-list for the formal parameters; ‘{ }’ is the block giving the code for the state-
ment. The parentheses in the return are not required.

C converts all float actual parameters to double, so formal parameters declared float have
their declaration adjusted to read double. Also, since a reference to an array in any context (in
particular as an actual parameter) is taken to mean a pointer to the rst element of the array,
declarations of formal parameters declared ‘array of ...‘ are adjusted to read ‘pointer to ...’.
Finally, because neither structures nor functions can be passed to a function, it is useless to
declare a formal parameter to be a structure or function (pointers to structures or functions are
of course permitted).

A free return statement is supplied at the end of each function denition, so running o"
the end causes control, but no value, to be returned to the caller.

10.2 External data definitions
An external data denition has the form

data-denition:
declaration

The storage class of such data may be extern (which is the default) or static, but not auto or
register. .

-23-

11. Scope rules t

A C program need not all be compiled at the same time: the source text of the program may be
kept in several les, and precompiled routines may be loaded from libraries. Communication
among the functions of a program may be carried out both through explicit calls and through
manipulation of external data. t

Therefore, there are two kinds of scope to consider: rst, what may be called the lexical
scope of an identier, which is essentially the region of a program during which it may be used
without drawing ‘undened identier’ diagnostics; and second, the scope associated with exter-
nal identiers, which is characterized by the rule that references to the same external identier
are references to the same object.

1 1.1 Lexical scope

The lexical scope of identiers declared in external denitions persists from the denition
through the end of the le in which they appear. The lexical scope of identiers which are for-
mal parameters persists through the function with which they are associated. The lexical scope

of identiers declared at the head of blocks-persists until the end of the block. The lexical
scope of labels is the whole of the function in which they appear.

Because all references to the same external identier refer to the same object (see §1l.2)
the compiler checks all declarations _of the same external identier for compatibility; in effect
their scope is increased to the whole le in which they appear.

In all cases, however, if an identier is explicitly declared at the head of a block, including
the block constituting a function, any declaration of that identier outside the block is

suspended until the end of the block.

Remember also (§8.5) that identiers associated with ordinary variables on the one hand
and those associated with structure and union members and tags on the other form two disjoint
classes which do not conict. Typedef names are in the same class as ordinary identiers.
They may be redeclared in inner blocks, but an explicit type must be given in the inner declara-
tion:

typedef float distance;

{ auto int distance;

The int must be present in the second declaration, or it would be taken to be a declaration with
no declarators and type distance.‘

1 1.2 Scope of externals

If a function declares an identier to be extern, then somewhere among the les or libraries
constituting the complete program there must be an external denition for the identier. All
functions in a given program which refer to the same external identier refer to the same
object, so care must be taken that the type and extent specied in the denition are compatible
with those specied by each function which references the data.

In PDP-ll C, compatible external denitions of the same identier may be present in
several of the separately-compiled pieces of a complete program, or even twice within the same
program le, with the limitation that the identier may be initialized in at most one of the
denitions. In other operating systems, however, the compiler must know in just which le the
storage for the identier is allocated, and inwhich le the identier is merely being referred to.
The appearance of the extern keyword in an external denition indicates that storage for the
identiers being declared will be allocated in another le. Thus in a multi-le program, an

‘It is agreed that the ice is thin here.

- 24.

external data denition without the extern specier must appear in exactly one of the les.
Any other les which wish to give an external denition for the identier must include the
extern in the denition. The identier can be initialized only in the declaration where storage
is allocated.

Identiers declared static at the top level in external denitions are not visible in other
les.

12. Compiler control lines
The C compiler contains a preprocessor capable of macro substitution, conditional compilation,
and inclusion of named les. Lines beginning with ‘#’ communicate with this preprocessor.
These lines have syntax independent of the rest of the language; they may appear anywhere and
have effect which lasts (independent of scope) until the end of the source program le.

12.1 Token replacement

A compiler-control line of the form

define identier token-string

(note: no trailing semicolon) causes the preprocessor to replace subsequent instances of the
identier with the given string of tokens. A line of the form

define identi/'ier(identifier , , identier) token-string

where there is no space between the rst identier and the ‘(’, is a macro denition with argu-
ments. Subsequent instances of the rst identier followed by a ‘(’, a sequence of tokens del-
imited by commas, and a ‘)’ are replaced by the token string in the denition. Each occurrence
of an identier mentioned in the formal parameter list of the denition is replaced by the
corresponding token string from the call. The actual arguments in the call are token strings
separated by commas; however commas in quoted strings or protected by parentheses do not
separate arguments. The number of formal and actual parameters must be the same. Text
inside a string or a character constant is not subject to replacement.

In both forms the replacement string is rescanned for more dened identiers. In both
forms a long denition may be continued on another line by writing ‘\’ at the end of the line to
be continued.

This facility is most valuable for denition of ‘manifest constants’, as in

define TABSIZE 100

int table[TABSlZE];

A control line of the form

undef identier

causes the identier’s preprocessor denition to be forgotten.

12.2 File inclusion
A compiler control line of the form

include "lename"

causes the replacement of that line by the entire contents of the le lename.

The named le is searched for rst in the directory of the original source le, and then in
a sequence of standard places. Alternatively, a control line of the form

include <lename>

searches only the standard places, and not the directory of the source le.

Includes may be nested.

-25-

12.3 Conditional compilation

A compiler control line of the form

if constant-expression

checks whether the constant expression (see §I5) evaluates to non-zero. A control line of the

form

ifdef identier

checks whether the identier is currently dened in the preprocessor; that is, whether it has

been the subject of a #define control line. A control line of the form

ifndef identier

checks whether the identier is currently undened in the preprocessor.

All three forms are followed by an arbitrary number of lines, possibly containing a control
line

else

and then by a control line

endif
If the checked condition is true then any lines between #else and #endif are ignored. If the
checked condition is false then any lines between the test and an #else or, lacking an #else,
the #endif, are ignored.

These constructions may be nested.

12.4 Line control
For the benet of other preprocessors which generate C programs, a line of the form

line constant identier

causes the compiler to believe, for purposes of error diagnostics, that the next line number is

given by the constant and the current input le is named by the identier. If the identier is

absent the remembered le name does not change.

13. Implicit declarations
It is not always necessary to specify both the storage class and the type of identiers in a

declaration. Sometimes the storage class is supplied by the context: in external denitions, and

in declarations of formal parameters and structure members. In a declaration inside a function,
if a storage class but no type is given, the identier is assumed to be int; if a type but no

storage class is indicated, the identier is assumed to be auto. An exception to the latter rule is

made for functions, since auto functions are meaningless (C being incapable of compiling code

into the stack). If the type of an identier is ‘function returning ...’, it is implicitly declared to
be extern. .

In an expression, an identier followed by (and not currently declared is contextually
declared to be ‘function returning int’.

14. Types revisited
This section summarizes the operations which can be performed on objects of certain types.

14.1 Structures and unions

There are only two things that can be done with a structure or union: name one of its members

(by means of the . operator); or take its address (by unary 81). Other operations, such as

assigning from or to it or passing it as a parameter, draw an error message. In the future, it is

expected that these operations, but not necessarily others, will be allowed.

§7.l says that in a direct or indirect structure reference (with . or —>) the name on the \

.25-

right must be a member of the structure named or pointed to by the expression on the left. To
allow an escape from the typing rules, this restriction is not rmly enforced by the compiler. In
fact, any lvalue is allowed before ‘.’, and that lvalue is then assumed to have the form of the
structure of which the name on the right is a member. Also, the expression before a ‘—>’ is
required only to be a pointer or an integer. If a pointer, it is assumed to point to a structure of
which the name on the right is a member. If an integer, it is taken to be the absolute address,
in machine storage units, of the appropriate structure.

Such constructions are non-portable.

14.2 Functions
There are only two things that can be done with a function: call it, or take its address. If the
name of a function appears in an expression not in the function-name position of a call, a
pointer to the function is generated. Thus, to pass one function to another, one might say

int f();

9(f);
Then the denition of g might read

g (funcp)
int (*funcD) ();

can

(*funcp) ();

Notice that fwas declared explicitly in the calling routine since its rst appearance was not fol-
lowed by (.

14.3 Arrays, pointers, and subscripting
Every time an identier of array type appears in an expression, it is converted into a pointer to
the rst member of the array. Because of this conversion, arrays are not lvalues. By denition,
the subscript operator [] is interpreted in such a way that ‘El[E2]’ is identical to
‘*((El) + (E2))’. Because of the conversion rules which apply to +, if E1 is an array and E2
an integer, then El[E2] refers to the E2-th member of E1. Therefore, despite its asymmetric
appearance, subscripting is a commutative operation.

A consistent rule is followed in the case of multi-dimensional arrays. If E is an n-
dimensional array of rank i X j>< - - - ><k, then E appearing in an expression is converted to a
pointer to an (n—l)-dimensional array with rank j >< - - - ><k. If the * operator, either explicitly
or implicitly as a result of subscripting, is applied to this pointer, the result is the pointed-to
(n—l)-dimensional array, which itself is immediately converted into a pointer.

For example, consider

int x[3][5l;

Here x is a 3X5 array of integers. When x appears in an expression, it is converted to a pointer
to (the rst of three) 5-membered arrays of integers. In the expression ‘xlil’, which is
equivalent to ‘*(x+i)’, x is rst converted to a pointer as described; then iis converted to the
type of x, which involves multiplying iby the length the object to which the pointer points,
namely 5 integer objects. The results are added and indirection applied to yield an array (of 5
integers) which in turn is converted to a pointer to the rst of the integers. If there is another
subscript the same argument applies again; this time the result is an integer.

It follows from all this that arrays in C are stored row-wise (last subscript varies fastest)
and that the rst subscript in the declaration helps determine the amount of storage consumed

-27-

by an array but plays no other part in subscript calculations.

15. Constant expressions
In several places C requires expressions which evaluate to a constant: after case, as array
bounds, and in initializers. In the rst two cases, the expression can involve only integer con-
stants, character constants, and sizeof expressions, possibly connected by the binary operators

+—~=/%&|~<< >> --=!=<><= >=
or by the unary operators

or by the ternary operator
Q .

Parentheses can be used for grouping, but not for function calls.

A bit more latitude is permitted for initializers; besides constant expressions as discussed
above, one can also apply the unary & operator to external or static objects, and to external or
static arrays subscripted with a constant expression. The unary & can also be applied implicitly
by appearance of unsubscripted arrays and functions. The basic rule is that initializers must
evaluate either to a constant or to the address of a previously declared external or static object
plus or minus a constant.

-28-

16. Grammar revisited.
-

This section repeats the grammar of C in notation somewhat dilferent than given before.
The description below is adapted directly from a YACC grammar actually used by several com-
pilers; thus it may (aside from possible editing errors) be regarded as authentic. The notation
is pure YACC with the exception that the ‘I’ separating alternatives for a production is omitted,
since alternatives are always on separate lines; the ‘;’ separating productions is omitted since a
blank line is left between productions.

The lines with ‘%term’ name the terminal symbols, which are either commented upon or
should be self-evident. The lines with ‘%left,’ ‘°/oright,’ and ‘%binary’ indicate whether the
listed terminals are left-associative, right-associative, or non-associative, and describe a pre-
cedence structure. The precedence (binding strength) increases as one reads down the page.
When the construction ‘%prec x’ appears the precedence of the rule is that of the terminal x;
otherwise the precedence of the rule is that of its leftmost terminal.

°/oterm NAME
%term STRING
%term ICON
%term FCON
%term PLUS
%term MINUS
%term MUL
%term AND
%term QUEST
%term COLON
%term ANDAND
%term OROR
%term ASOP
%term RELOP
%term EQUOP
%term DIVOP
%term OR
%term EXOR
%term SHIFTOP
%term INCOP
%term UNOP
%term STROP

\\\\\\\\\\ii4&14|-11-Q~I4v

'"+A>:;A2
§\\O-
+/\\°-

4|» V\
V

1-\

style =+ etc. */
= >= < > -/

—>
- ../

*/

*/

I-\

%term TYPE /* int, char, long, oat, double, unsigned, short */
%term CLASS /* extern, register, auto, static, typedef */
%term STRUCT /* struct or union */ '

%term RETURN
%term GOTO
%term IF
%term ELSE
%term SWITCH
%term BREAK
%term CONTINUE
%term WHILE
%term DO
%term FOR
%term DEFAULT
%term CASE
%term SIZEOF

%term LP
%term RP
%term LC
%term RC
%term LB
%term RB
%term CM
%term SM
%term ASSIGN

°/oleft CM
%right ASOP
%right QUEST
°/oleft OROR

-29-

\\\\\\\\\

-IIQQI-I-I1}Q

"aveu¢|,$q—¢-nv_\-//-\

I‘II>I“I"<IQI»
‘,\\\&\\\§ \

ASSIGN
COLON

°/cleft ANDAND
%left OROP
%left AND
°/obinary EQUOP
%binary RELOP
%left SHIFTOP
%left PLUS
%left MUL
%right UNOP
%right INCOP
°/oleft

program:

ext_def_list:

extemal_def:

function__body:

dcl_list:

declaration:

optattrib:

speciers:

LB LP

MINUS
DIVOP

SIZEOF
STROP

ext_def_list

ext_def_list external_def
/* empty */

optattrib SM
optattrib init_dcl_list SM
optattrib fdeclarator function_body

dcl_list compoundstmt

dcl_list declaration ‘

/* empty */

speciers declarator_list SM
speciers SM

speciers
/* empty */

CLASS type
type CLASS
CLASS
IYPC

-30.

type: TYPE
TYPE TYPE
struct_dcl

struct__dcl: STRUCT NAME LC type_dcl_list RC
STRUCT LC type_dcl_list RC
STRUCT NAME

type_dcl_list: type_declaration
type_dcl_list type_declaration

type_declaration: type declarator_list SM
struct_dcl SM
type SM

declarator_list: declarator
declarator_list CM declarator

declarator: fdeclarator
nfdeclarator
nfdeclarator COLON con_e %prec CM
COLON con_e %prec CM

nfdeclarator: MUL nfdeclarator
nfdeclarator LP RP
nfdeclarator LB RB
nfdeclarator LB con_e RB
NAME
LP nfdeclarator RP

fdeclarator: MUL fdeclarator
fdeclarator LP RP
fdeclarator LB RB
fdeclarator LB con_e RB
LP fdeclarator RP
NAME LP name_list RP
NAME LP RP

name_list: NAME
name_list CM NAME

init_dcl_list: init_declarat0r %prec CM
init_dcl_1ist CM init_declarator

init_declarator: nfdeclarator
nfdeclarator ASSIGN initializer
nfdeclarator initializer
fdeclarator

init_list: initializer %prec CM
init_list CM initializer

initializer: e %prec CM
LC init_list RC

-31-

LC init_list CM RC

compoundstmtz LC dcl_list stmt_list RC

stmt__list: stmt_list statement
/* empty ~/

statement: e SM
compoundstmt
IF LP e RP statement
IF LP e RP statement ELSE statement
WHILE LP e RP statement
DO statement WHILE LP e RP SM
FOR LP opt_e SM opt_e SM opt_e RP statement
SWITCH LP e RP statement
BREAK SM
CONTINUE SM
RETURN SM
RETURN e SM
GOTO NAME SM
SM
label statement

label: NAME COLON
CASE con_e COLON
DEFAULT COLON

con_e: e %prec CM

opt_e: e
/* empty */

elist: e %prec CM
elist CM e

e: e MUL e

e CM e
e DIVOP e

e PLUS e

e MINUS e
e SHIFTOP e
e RELOP e

e EQUOP e

e AND e
e OROP e

e ANDAND e
e OROR e

e MUL ASSIGN e
e DIVOP ASSIGN e

e PLUS ASSIGN e

e MINUS ASSIGN e

e SHIFTOP ASSIGN e
e AND ASSIGN e

e OROP ASSIGN e

-32-

e QUEST e COLON e
e ASOP e
e ASSIGN e

term

term: term INCOP
MUL term
AND term _, -~ »

MINUS term
UNOP term
INCOP term
SIZEOF term
LP type_name RP term °/oprec STROP
SIZEOF LP type_name RP %prec SIZEOF
term LB e RB ,

term LP RP —

term LP elist RP
term STROP NAME
NAME
ICON
FCON
STRING
LP e RP

type_name: type" abst_decl

abst_decl: /* empty */
LP RP
LP abst_decl RP LP RP
MUL abst_decl

'abst_decl_LB RB .

abst_decl LB con_e RB
LP abst_decl RP "

