
UNIX on a Microprocessor

H. Lycklama

ABSTRACT

The decrease in the cost of computer hardware, brought about by the
advent of the microprocessor and inexpensive solid state memory, has brought
the personal computer system to reality. The cost of software development
shows no sign of decreasing soon. Howevqr, the fact that a large amount of
software has been developed for the UNIX time-sharing system in the high
level language, C, makes much of this software portable to another processor
with rather limited hardware in comparison. A single-user UNIX system has
been developed for the DEC LSI-11 microprocessor using 20K words of pri
mary memory and floppy disks for secondary storage. By preserving the user
system interface of the UNIX system, it is possible to run almost all of the
standard UNIX languages and subsystems on this single-user version of the
UNIX system.

A background process as well as foreground processes may be run. The
file system is "UNIX-like" but has provisions for dealing with contiguous files.
Subroutines have been written to interface to the file system on the floppy
diskettes. Asynchronous read/write routines are also available to the user.

The LSI-UNIX system (LSX) has appeal as a stand-alone system for dedi
cated applications. It also has many potential uses as an intelligent terminal
system.

March 22, 1978

UNIX is a Trademark of Bell Laboratories.

UNIX on a Microprocessor

H. Lycklama

"·:.·'c.·•-.'._'_,. '.:::_·-,;-

H~~1~

1. Introduction

The UNIX Operating System (1) has enjoyed a wide acceptance as a powerful general
purpose time-sharing system. It supports a large variety of languages and subsystems. It runs
on the Digital Equipment Corporation PDP-11/40, 11/45 and 11/70 computers. These are all
16-bit word machines and have a memory management unit which makes multi-programming
easy to support. The UNIX system is written in the system programming language, C (2). In
fact most user programs and subsystems are also written in this language. Other languages and
subsystems supported include Basic, Fortran, Snobol, TMG and Yacc (a compiler-compiler).
·The file system is a general hierarchical structure supporting device independence.

With the advent of the DEC LSI-11 microprocessor (3) it has become desirable to tran
sport as much as possible of the software developed for the UNIX system to this machine. One
of the biggest problems faced is the lack of a memory management unit, thus limiting the total
address space of both system and user to 28K words. The challenge then is to reduce the 20K
word original UNIX operating system to 8K words and yet maintain a useful operating system.
This limits the number of device drivers as well as the system functions which can be sup
ported. The secondary storage used is floppy disks (diskettes). The operating system was writ
ten in the C language and provides most of the capabilities of the standard UNIX operating sys
tem. The system occupies 8K words in the lower part of memory leaving up to 20K words for
a user program. This configuration permits most of the UNIX user programs to run on the
LSI-11 micro-computer. The operating system (LSX) allows a background process as well as
foreground processes.

The fact that a minimum system can be configured for about $6000 makes the LSX sys
tem an attractive stand-alone system for dedicated applications such as control of special
hardware. The system also has appeal as an intelligent terminal and for applications which
require a secure and private data base. In fact, this is a personal computer system with almost
all of the functions of the standard UNIX time-sharing system.

This paper describes some of the objectives of the LSX system as well as some of its more
important features. Its capabilities are compared with the powerful UNIX time-sharing system
which runs on the PDP-11/40, 11/45 and 11/70 computers (4), where appropriate. A sum
mary and some thoughts on future directions are also presented.

2. Why UNIX on a Microprocessor?

Why develop a microprocessor based UNIX system? The increasing trend to micropro
cessors and the proliferation of intelligent terminals make it desirable to harness the UNIX
software into an inexpensive micro-computer and give the user a personal computer system.
There are a number of factors to be considered in doing this:

1. cost of hardware
2. cost of software
3. UNIX software base
4. size of system.

The hardware costs of a computer system have come down dramatically over the last few
years (even over the past few months). This trend is likely to continue in the foreseeable
future. Microprocessors on a chip are a reality. The cost of primary memory (e.g. dynamic -

- 2 -

-~~
~~~;)~~::·::·'-~:. 
_,:-;;;.:·;;_; · .... -- 

~{f1-~.r, 
:.;·::·:-,,.·.;.,,-_;: .. ' 

.::--:..-::~<~;/"-: 
···<>."··;> 

MOS memory) is decreasing rapidly as 4K-bit chips are being replaced by 16K-bit chips. There 
exists a large amount of expertise in PDP-11 hardware interfacing. The similarity of the Q-bus 
of the LSI-11 microcomputer to the UNIBUS of other members of the PDP-11 family of com 
puters makes this expertise available. 

The software development costs continue to increase since the development of new 
software is so labor intensive. It is difficult to estimate the cost of writing a particular software 
application program. Until automatic program writing techniques become better understood 
and used, this trend is not likely to be turned around any time soon. Thus it becomes impera 
tive to take advantage of as much software that has already been written as possible. A tremen 
dous amount of software has been written to run under the UNIX operating system. It seems 
wise to use as much of this as possible. The operating system developed for the LSI-11 micro 
computer supports most of the UNIX user programs which run under UNIX time-sharing, even 
though LSX is a single-user system. Thus most of the software for the system is already avail 
able, minimizing the cost of software development. 

With the advent of some powerful microprocessors, the size of a computer system has 
shrunk correspondingly. Small secondary storage units (floppy disks) are also becoming 
increasingly popular. In particular, DEC is marketing the LSI-11 micro-computer which is a 
16-bit word machine with an instruction set that is compatible with the PDP-11 family of com 
puters. It is conceivable that in the next 5 years or so the power of a mini-computer system 
will be available in a microcomputer. It will become possible to allow a user to have a dedi 
cated microcomputer rather than a part of a mini-computer time-sharing system. LSX is a step 
in this direction. This will give the user a cost effective interactive and powerful computer sys 
tem with a known response time to given requests, since the machine is not time-shared. A 
dedicated one-user system can be made available to guarantee "instantaneous" response to 
requests of a user. There are no unpredictable time-sharing delays to deal with. The system 
has applications in areas where security is important. A user can gain access to the system only 
in the room in which the system resides. It is thus possible to limit access to a user's data. 

Local text-editing and text-processing features are now available. Other features can be 
added easily. Interfaces to special 1/0 equipment on the Q-bus for dedicated experiments can 
be added. The user then has direct access to this equipment. Using floppy disks as secondary 
storage gives the user a rather small data base. A link to a larger machine can provide access to 
a larger data base. Interfaces such as the DLVll (serial interface) and the DRVll (parallel 
interface) can provide access to other computers. 

One of the main benefits of using the UNIX software base is that the C compiler is avail 
able for writing application programs in the structured high-level language, C. The use of the 
shell command interpreter (5) is also a great asset. A general hierarchical file system is avail 
able. 

The LSX system has two main areas of application: 

(1) control of dedicated experiments 
(2) intelligent terminals. 

As a dedicated experiment controller, one can interface special 1/0 equipment to the LSI-11 
Q-bus and both support and control the experiment with the same LSX system. The applica 
tions as an intelligent terminal are many-fold: 

(1) development system 
(2) general text-processing applications 
(3) form editor 
(4) two-dimensional cursor-controlled text editor. 

'1111 
. f;;;:.?:/·_C!',:~'. 



- 3 - 

I ·,.a·;. 

J't~ ~\.Jy:c:. 

II 
~~§ 
~~~~¥; 
;.::::,:.,;:-·'":;.
.-.:,t,:.· ; .. ~.

I

3. Hardware Considerations
The hardware required to build a useful LSX system is minimal. The absolute minimum

pieces required are:

LSI-11 microcomputer (with 4K memory)
16K memory (e.g. dynamic MOS)
EIS chip (extended instruction set)
Floppy disk controller with one drive
DL Vl l serial interface
Terminal with serial interface
Power supply
Cabinet.

A more flexible and powerful system is shown in Figure 1. An actual total system is shown in
Figure 2.

The instruction set of the LSI-11 micro-computer is compatible with that of the members
of the PDP-11 family of computers with the exception of 10 instructions. The missing instruc
tions are provided by means of the EIS chip. These special instructions may be generated by
high-level compilers and it is advantageous not to have to emulate these instructions on the
micro-processor. The instructions include the multiply, divide and multiple shift instructions.

A floppy disk controller with up to 4 drives is shown. At present there are only a few
controllers for floppy disks which interface to the LSI-11 Q-bus. The typical rotation time of
the floppies is 360 RPM, i.e. six times per second. All floppies have 77 tracks, however the
number of sectors and the size of sectors is variable. The comparative data for the various
floppy diskettes are as follows:

Controller DEC BTL AED
sector size (bytes) 128 512 512
sectors per track 26 8 16
number of tracks 77 77 77
total capacity (bytes) 256256 315392 630784
DMA capability (y/n) no yes yes.
max. transfer rate 6656 24576 49152

The maximum transfer rate is quoted in bytes per second. The outside vendor (AED Systems
(6)) supplies dual-density drives for an increase in storage capacity. The DEC drives are IBM
compatible and have less storage capacity. We have chosen to build our own floppy disk con
troller for some special Bell System requirements (7). The advantages of OMA (direct memory
access) capabilities are obvious as regards to ease of programming and transfer rate. If IBM
format compatibility is important, the throughput and capacity of the system are somewhat
diminished.

At least one serial interface card is required to provide a terminal for the user of the sys
tem. Provided the terminal uses the standard RS232C interface, most terminals are suitable.
For quick editing capabilities, CRT terminals are appropriate. For hard copy, either the com
mon TTY33 or other terminals which run at higher baud rates may be more suitable.

The choice of memory depends on the importance of system size and whether power-fail
capabilities are important. Core memory is of course non-volatile but it takes more logic boards
and more space and is therefore more expensive than dynamic MOS memory. Dynamic MOS
memory does not take as much space, is less expensive and takes less power, but its contents
are volatile in case of power dips. Memory boards up to 16K words in size are available (8) for
the LSI-11 micro-processor at a very reasonable price. The memory costs are likely to keep
decreasing in the foreseeable future.

;~

1i~
..

- 4 -

II
";.· ,,.,.·,

.-,~~~~
_.::.::

Another serial or parallel interface is often useful for connection to a larger machine with
a large data base and a complete program development and support system. It is of course
necessary to use such a connection to bootstrap up a system on the LSI-11 micro-computer.
The central machine in this case is used to store all source for the LSX system and to compile
the binary object programs required.

The system hardware is flexible enough so that, if necessary, a bus extender may be used
to interface special devices to the Q-bus. This provides the ability to add special-purpose
hardware which can now be controlled by the LSX system. In a later section we describe a TV
raster scan terminal which was built for editing and graphics applications (8). Other systems
have interfaced special signal-processing equipment to the Q-bus. As DEC provides more of
the interfaces to standard 1/0 peripherals, the applications will no doubt expand.

4. LSX File System
The hierarchical file structure of the UNIX system is maintained. The system makes a

distinction between ordinary files, directories and special files. Device independence is
inherent in the system. Mounted file systems are also supported. Each file system contains its
own i-list of inodes which contain the file maps. Each inode contains the size, number of links
and the block numbers in the file. Space on disk is divided into 512-byte blocks. In contrast
with the UNIX file system, two types of ordinary files are allowed. The 'UNIX-type' file inode
contains the block numbers which make up a file. If the file is larger than eight blocks, the
numbers in the inode are pointers to the blocks which contain the block numbers. This
requires two accesses to the disk for random file access. LSX recognizes another type of file,
the contiguous file, in which the inode contains a starting block number and the number of
consecutive blocks in the file. This requires only one disk access for a random access to a file,
which is important for slow access devices such as floppy disks. Two special commands are pro
vided for dealing with contiguous files; one for allocating space for a file and a second one for
moving a file into a contiguous area. The layout of the disk is also crucial for optimum
response to commands. By locating directories and inodes close to each other, file access is
measurably improved over a random distribution on disk.

There is no read/write protection on files. File protection is strictly the user's responsibil
ity. The user is essentially given super-user permissions. Only execute and directory protection
is given on files. Group id's are not implemented. File system space is limited to the capacity
of the diskette in use (616 blocks for the BTL controller).

5. LSX System Features
The LSX operating system is written in the C language and as such bears a strong resem

blance to the multi-user UNIX system developed for the PDP-11/40, 11/45 and 11/70 comput
ers. The total system occupies 8K words of memory and has room for only 6 system buffers.
Because the C compiler itself requires up to 12K words of user address space, it is possible to
run the C compiler using only 20K words of total memory. It is possible to increase the system
size if more capabilities are required in the operating system since the total memory space avail
able to the system and user is actually 28K words. More system buffers could be provided in
the system. If the system is kept to 8K words, a 20K word user program could be run. How
ever, this requires more swap space, which is at a premium.

The system is a single-user system with only one process running at any one time. A pro
cess is defined as the execution of an image contained in a file. However, a process may fork
up to two levels deep, giving rise to a total of three active foreground processes. The last pro
cess forked will run to completion first. More foreground processes can be run but this
requires more swap space on the diskette used for this purpose.

The command interpreter, the Shell, is identical to that used in the UNIX system. The
file name given as a command is sought in the current directory. If not found, '/bin/' is
prepended and the '/bin' directory searched. The '/bin' directory contains all of the commands
generally used. Standard input, output and diagnostic files are supported. Re-direction of - ""'"'~ "~.f?~

- 5 -

. >Z~:;rz:::~~
;4~~

.. - ,_·~:- :~

standard 1/0 is possible. Shell 'scripts' are also executable by the command interpreter.
'Pipes' are not supported in the system, but pseudo-pipes are supported in the command

shell. Pipes provide an interprocess communication channel in the UNIX time-sharing system.
These pseudo-pipes are accomplished by expanding the shell syntax "t' to "> ._pf;< ._pf'. In
other words, a temporary file is used to store the intermediate data passed between the com
mands. Providing that sufficient disk space exists, the pipe implementation is transparent to the
user.

During initialization, the system automatically mounts a user file system on a second
diskette if so desired. The 'mount' and 'unmount' commands are not available to the user.
Thus a reboot of the system is necessary to mount a new user diskette. The system diskette is
normally configured with swap space and temporary file space. User programs and files may
reside on the system diskette if a user diskette is not mounted.

The size of memory available and the lack of memory protection (i.e. memory segmenta
tion unit) have put some restrictions on the capabilities of the LSX operating system. However
these are not severe in the single-user environment in which the system is run. Profiling is not
provided in the system. Timing information only becomes available if a clock interrupt is pro
vided on the LSI-11 event line at 60 times per second. Only one character device driver is
allowed at present as well as only one block device driver. No physical 1/0 is provided for.
There is also no read-ahead on file 1/0. Only 6 system buffers are provided and the buffering
algorithm is much simpler than in the UNIX system. Interactive debugging is not possible, but
the planting of break-point traps and post-mortem debugging of a core image is possible. All
user programs must be relocated to begin execution at 8K in memory. This required
modifications to the UNIX link edit (id) and debugger (db) programs. Most other differences
between the LSX and the UNIX systems are transparent to the user.

6. Background Process
It is possible to run a background process on LSX while running a number of foreground

processes to get some concurrency out of the system. The background process is run only
while the current foreground process is in an input wait state. Two new system calls were
added to LSX, 'bground' and 'kill', to enable the user to run and remove a background process .
Only one background process is allowed to run and it is not allowed to fork another child pro
cess; however, it may execute another program. The background process may be either
compute-bound or perform some 1/0 functions, such as outputting to a hard-copy terminal.
When the background process is compute-bound, it may take up to two seconds to respond to a
foreground user's interactive command.

7. Stand-Alone Routines
Under LSX it is possible to run a dedicated program (<20K words) in real time using all

of the conveniences of the UNIX system calls to communicate with the file system. For pro
grams which require more than 20K words of memory or which require more flexibility than
provided by the LSX system, a set of subroutines provide the user a UNIX-compatible interface
to the file system without using the LSX system calls. A user is given more control over the
program. Disk 1/0 issued by the user is buffered using the read-ahead and write-behind
features of the standard UNIX system. A much greater number of system buffers are provided
than is possible in the LSX system. Eight of the standard file system interface routines are pro
vided. The arguments required for each routine and the calling sequence are identical to those
required by the UNIX system C-interface routines. These include: read, write. open, close, creat,
sync, unlink and seek. Three unique routines: saread, sawrite and statio are provided to enable
the user to do asynchronous 1/0 directly into buffers in the user's area rather than into system
buffers. These additional routines allow a user to start multiple 1/0 operations to/from multi
ple files concurrently, do some computation and then wait for completion of a particular out
standing 1/0 transfer at some later time. To provide real time response in applications which
require it, contiguous files may be created by means of an salloc routine. The size of the file is

- 6 -

... ,.·.· .. :.·.···
... ··

.,.
/;}~ti~;{
}Jff;·

i

specified in blocks. Once created, the file may be grown by means of the sextend routine. A
'load' program under LSX enables the user to load a stand-alone program which must start exe
cution at location O in memory.

8. A Program Development System

One system disk has been configured to contain a fairly complete program development
system. The development programs include:

editor
assembler
C compiler
link editor
debugger
command interpreter
dump program

as well as a number of libraries which contain frequently used routines for use by the link edi
tor. It is thus possible to compile, run and debug application programs completely on-line
without access to a larger machine. In a typical application, the contents of the system disk
remain quite stable, whereas all user programs are maintained on a permanently mounted user
diskette. For minimal systems it is possible to run with only one diskette. Due to the lack of
protection, it is possible to crash the system. However in practice, the use of the high-level
language C minimizes the number of fatal bugs which actually occur, since the stack frame and
program counter are quite well controlled.

In our particular installation, it is often convenient to use the Satellite Processor System
(9) to aid in the running and debugging of new user programs. This is possible since programs
running in the LSI-11 satellite microcomputer behave as if they are running on the central
machine with access to its file system. This emulates the environment on LSX quite closely.
Thus a program may be compiled on a central machine supporting the C compiler, run on the
LSI-11 microcomputer and debugged. When the program has been completely debugged, it is
possible to load the program onto the floppy file system using the stand-alone routines
(described previously) and the satellite processor system. This program may then be run under
LSX.

9. Text Processing System
Another area of application for the LSX system is as a personal computer system for text

processing. Files may be prepared using the editor and run off using the UNIX nroff command
with a hard-copy device. This system disk includes programs such as:

ed
cat
pr
od
roff
nroff
neqn

editor
output ascii files
print ascii files
octal dump files
formatter
formatter
mathematical equation formatter

The file transfer program referred to in the previous section enables one to transfer files
to/from a machine with a larger data base. A user's files may be maintained on his personal
mounted diskette. If a hard-copy device is attached to the computer as well as the user's
interactive terminal, hard-copy output can be obtained using a background process while editing
another file in the foreground.

--------------------------------·~---~-~---------------~

- 7 -

I

10. Support of an LSX System

The limited secondary storage capacity available to LSX on floppies prevents the mounting
of all of the system source and user program source code simultaneously. Thus one must be
selective as to which programs are mounted at any one time. If one desires to do a lot of pro
gram development on LSX, it is often desirable to have a connection to a host machine on
which the source code for the application programs can be maintained and compiled. There are
two means available to do this. One is to use the Satellite Processor System (9) and the stand
alone routines described in a previous section as a connection program. This enables one to
transfer files (including complete file systems) between the host machine and the satellite pro
cessor. The SPS system must exist on the host machine and the satellite processor must not be
too far distant from the host machine.

A second means of providing support for LSX software is to use a serial line connection
such as the DLVll between the host machine and the LSI-11 processor. The connection may
be either dedicated or dial-up. It requires just five programs, three on the LSX system and two
on the host processor. The three programs on LSX include a program to set up the connection
to the host machine, i.e. login as a user to the host machine, a program to transfer files from
the host to LSX and a third program to transfer files from LSX to the host. On the host
machine, the programs include one to transfer a file from the host to the LSX system and vice
versa. Complete file systems as well as individual files may be transferred. Checksums are
included to ensure error-free transmission.

11. LSX System Uses
The LSX system has been put to a number of innovative uses at Bell Laboratories. These

include projects which use it as a research tool, for exploratory development in intelligent ter
minals and for software support for dedicated applications. LSX is well-suited for the control of
an intelligent terminal. As an example, some dual-ported memory has been interfaced to the
LSI-11 Q-bus. One port allows direct reading and writing of this memory by the LSI-11 CPU.
The other port is used by a micro-controller to display characters on a TV raster scan screen.
This enables one to change screen contents "instantaneously". The terminal is suitable for
either a two-dimensional text editor or for form entry applications. LSX is being used as a
vehicle for investigating the future uses of programmable terminals in an office environment
for word processing applications.

Other LSX installations are being used to control dedicated hardware configurations. One
of the most exciting and in fact the original application for LSX was the software support sys
tem for a Digital Sound Synthesizer System. Here the contiguous files supported by LSX are
necessary for the real-time application, written as a stand-alone program consisting of a complex
multi-processing system controlling about 100 processes (10). The system is capable of existing
as a completely stand-alone system and providing program support on itself.

12. Summary
The LSX system is currently being used for research in intelligent terminals and in stand

alone dedicated systems. There are plans to use this system for further research in other areas
of Bell Laboratories. Hard-copy features have yet to be incorporated into the system in a clean
fashion. Currently, our system is connected to a larger machine using the Satellite Processor
System. More general connections to larger machines or possibly to a network of machines has
yet to be investigated. The LSX system also has potential uses in multi-terminal or cluster con
trol terminal systems where multi-tasking features are important. These application areas have
only been looked at superficially and warrant further investigation.

As a development system, LSX functions quite well. The response to most programs is
only a factor of four or so slower than on the conventional mini-computers. This is due mainly
to the slow secondary storage devices used by LSX. Optimization of file storage allocation on
secondary should improve response somewhat. For instance, the placement of directories close
to the inodes has improved throughput significantly. The placement of the system swap area

- 8 -

II
·?~{f!Jl

,:.:_,r~-?<<··

I

needs more investigation as to its effect on throughput.
The advent of large memory boards (64K words) will require the installation of memory

mapping to take full advantage of this large address space. This will enable the running of mul
tiple processes without the need for swapping a process out of primary memory. This should
also improve the response of the system and increase the number of uses to which it can be
put.

There is a necessary loss of some functionality in the LSX system because of the size of
the memory address space available on the LSI-11 computer. However as a single user system,
most of the functions are still available to the user. As an intelligent terminal system, a micro
processor with all of the UNIX software available is indeed quite a desirable "intelligent" termi
nal.

13. Acknowledgements

The author is indebted to H. G. Alles for designing and building both the initial PERTEC
floppy disk controller and the novel TV terminal. These two pieces of hardware have provided
much of the motivation for doing the LSX system in the first place and for doing research in
the area of intelligent terminals in particular. Many of the application and support programs
described here were written by Eugene W. Stark. John S. Thompson wrote a floppy disk driver
for the AED floppy disk controller to facilitate bringing up the LSX system on these disks. The
author is grateful to J. C. Swartzwelder and D. R. Weller for their efforts in putting together the
first LSI-11 system. M. H. Bradley wrote the initial program to connect the LSX system to a
host machine .

. I•... · -.; .. , ".··."
••••••• •

- 9 -

References

1. K.Thompson and D. M. Ritchie, "The UNIX Time-Sharing System", Comm. ACM 17, (July
1974), p365; also this issue.

2. D. M. Ritchie, S. C. Johnson, M. E. Lesk and B. W. Kernighan, "The C Programming
Language", this issue.

·!~~"1'.;
:;i,fii~

3. DEC LSI-11 Processor Handbook, 1976.

4. K. Thompson and D. M. Ritchie, "UNIX Programmer's Manual - 6th Edition", May, 1975.

5. S. R. Bourne, "The UNIX Shell - A Command Programming Language", this issue.

6. Advanced Electronics Design, Inc., 440 Potrero Ave., Sunnyvale, CA 94086.

7. H. G. Alles, Private Communication.

8. Monolithic Memory Systems.

9. H. Lycklama and C. Christensen, "A Mini-Computer Satellite Processor System", this issue.

10. D. L. Bayer, "Real-Time Software for Digital Music Synthesizer", Proc. of the Second Inter
national Conference of Computer Music, San Diego, October 1977.

l lUD.91:b)

UP TO 4 DRIVES
""

TERMINAL
- / ro•
- - - - - - - ---

LSl-11
MICRO-COMPUTER

(4K MOS)

16K
DYNAMIC

MOS MEMORY

DLV-11
SERIAL

INTERFACE

FLOPPY
DISK

CONTROLLER

Q-BUS -----a.----,-----iL-----,--------'~--..---...L-

SPECIAL
1/0

INTERFACE

DLV-11
SERIAL ·.>

INTERFACEt·

DRV-11
PARALLEL

INTERFACE

'NOil VHn91.:INO~llJ·ISl .

CONNECTION TO
PDP-11/45
COMPUTER

