L_M

203

o Bell Laboratories Cover Sheet for Technical Memorandum

The information contained herein is for the use of employees of Bell Loboratories and is not for publication (see GE] 13.9-3)

7~ Title- Implementation of Large Contiguous Dote- January 4, 1974

Files and Asynchronous I/0 in UNIX
. T™- T4-1352-1

o~
Other Keywords— UNIX
Operating Systems
Time-sharing
Large Files)
Avuthor(s) Location end Room Extension Charging Case~ 39394
p Lycklama, H. MH 7C-211 6170 Filing Case— 39394-11
= :
ABSTRACT .
Large contiguous files and asynchronous I/0 have
been implemented in the UNIX time-sharing system on a
Digital Equipment Corporation PDP-11/45 computer. These
-~
features were implemented to aid in handling the large
volumes of data required for picture processing research
in Center 135. It is now possible to transfer large
amounts of data (>512 bytes) directly to or from a user's
address space.
N
~~
-
Address Label
Pages Text 12 Other 2 Total 14
No. Figures 0 No. Tables No. Refs. _2
€-1932-C (6-73)

SEE REVERSE SIDE FOR OISTRIBUTION LIST

o "

RE1 [TELEPHORZ LAROFATORIES, INC, TN=T4=3352-1
DISTRINUTION
(PEFER GEX 13.9-3}
COMPLETE MEMORANDUM TO COMPLETE MENORARDUM TO COVER SHEET ONLY TO COVER SHEET OWLY TO COVER SHEET OMLY TO ﬁ
CURRESPONDENCE FILES -HO NULLER,J ¥ ALCALAY, DAVID CASPERS MRS BARBARA £ POUGHT, B8 T
MURPHY,J ARTHUR ALLYN, JANES R CAVINESS, JOHIN D POONTOUKIDIS, A
OFFICIAL FILE COPY NETRAVALI,ARUN N ALLES, HAROLD G CEMASHEXD, FAED FOWLER, BROCE R
(FORM t-7770) - PLUS NINKE,WILLIAM B ANDERSON, CHATTZE,N P roy,J ¢
ONE WHITE COPY FOPR MOOLANDI,J ARDERSON,D O CHAMBERS,J M PRARKLIN,NISS C M
EACH ADDITIONAL *PATZL,C K N ANDERSON, ROBERT V CRER, STEZPHEN PRANE,MIBS A J /A\
FILING CASE PEDERSEN,T J ANDEREON,WILLIAM A CEEZRRY,NS L L PRANK,RUDOLPH J L \ -
KEFERENCED PERUCCA,JAMES R APIDAS,Z J CLAYTON,DANIEL P FRARY,N1I8S EILEEN 5
PRASADA, BIREN ARMARDUSTER,MISS N 2 CLEARY,ROBERT W FRASER,A G
DATE FILE COPY PRIM,ROBERT C ARMITRONG, ANGUIN CLIFFORD, ROBERT M PREEMAN,K GLENN
(FORM F-1328) RENTSCHLER,JOHN A APNOLD, GEORGE W COBEM, ROBERT M FREENRY,ARNE 2
*RITCHIE,DENNIS M ARNOLD,S L COBEN, HARVEY PRICTE,J A .
71 REFEREZRCE COPIES ¢ROBERTS,CBARLES S APTHURS, EDWARD COLE,LOOIS M PROST,H PFONNELL ‘
ROBINSON, FRANK ATAL,B 8 COLLIEZR,ROBERT J +ALAR W
ROSENBERG, ROBERT L AVERILL,R B JR CONNERS, R R FURCIYK, MRS B 3
ROWLINSON,D B2 AXON,S L COMPILLY,C V YU,CBEN
10 X0 RUBINSTEIN,CHARLES B BACKLAR,MISS MICHERIE 8 CONWAY,MIS3 MAUREEN A GARCIAL,R ?
1353 SCATTAGLIA,JAMES V BACKMAN,G A COOK, THONAS GATEB,G W
135% 8SCHMIDT,ROBERT L BAFTLZIT,WADE 8 COOPER,C ANTRONY GAWRON,L J
1357 SLICHTER,W P BANER, ZIRICH O €O » JOHN A GAY, FRANCIS A /P\ .
1358 STORZ, FREDRICK G PADGH,C R COPP, DAVID R GEBALA,S G E
135 ©oPH SWANSON,GEORGE K BAYER,DOOGLAS L CORASICK,MISE M J GELBER,MISS CHERON L
13 DIR TEWKSRURY,S K PA7ER,JESSE A COULTER,J REGINALD GEPNER,JAMES R
. TROMPSON,JOAN 8 BENDA,M COURTNEY=PRATT,J 8 GERARD, ALLAN
BALEER,W O +THOMPSON, K BFNGTSON,A B CRANE, RODERICK P GEYLING,P T
BALDA IN, GAPY L THURSTON,R N RPRIANIN,O CONNELL J CRUDOP,G D GIBB, KRMMETH R
PERPANG,J £ *TILLOTSON,L C PERGEOLN, MRS SHARON A CRUME, LARRY L GILBEZRT,MRS HIWDA S
REYER, JEAN-DAVID SVARKREY,ROBEZRT C BFRGLAND,G DAVID CRUSE,MISS BARBARA L GINPEL,JAMES P
ROSWARTH,R H WALSH,X A PERKSTEIN, LAWRENCE DALZ,0 BROCE GITHERS,JOHR A
BOWER, EDWARD G WEBBER,R T BIATZO,MARTIN R DAVIDSON,CHARLES L GLASER,W A
oYD,G © WENGER,J L 31GEOW,C W JR DAVIS,MISS E D GIOVER,MRE S G
PHRAIFARD, RALPR € WRITACRE,W 2 BIGELOW,J B JR DAVIS,NISS L P GLUCK, P
BROWN, EARL F WHITTEN,J B PILINSKI,D J DAVIS,R L JR GOLAREX,MISS R
BUCHSBAUM,S J WILD,J CHRISTIAR FILOWOS, RICHARD M DAYELC X QGULDSMITH,
RUDRIKIS,Z L WOLONRT IS,V MICHAEL BIRCEALL,R B DE JAGER.D S GOLDSTEIN,A JAY

CAuDY,JAMES C

YAMIR, MRS E £

CHIN,GEN M YOORG,JAMES A BIREN,MRS IRMA B DEUTSCE,DAVID H GRABAN,R L
CHPISTENSEN, C 80 NAMES BITTNER, MRS B B DICKERT,L S JR GRANDLE,J A.JR
+CLOGSTON,A M DLINN,JAMEZS DICRAAN, B ¥ GRAVES, DONALD A
COLDREN, LARRY A PLY,JOGEZPH A) DICK,GEORGE W GREEZNEADM, R J
CONDON,J H COVER SHEET ONLY TO BODEN, ¥ J DIKINO,L A GREENBERG, JACK N ~
CUTLER, C CHAPIN BODWAR,J J DINNICK,JAMEZS O GREENE, MRS DELTA A
DOUGHTY, CAVID W BOGERT, P JEPFREY DOLAN,XRS MARIEZ T GREENHALGH,H WAIN
PILFNPERGER, ROBERT L CORRESPONDENCE PILES -EO POHACHEVSKY,I O DOLOTTA,T A GREIGEN,MISS K E
FREENY,S L BONACHEA,R N DRYDEN, JORN J GRIPP,MISS N
GTLLETTE, DEAN s corres BOWER,¥ W DUBIS, N GROSS,ARTHUR G
GLORDANO, PHILIP P PLUS ONE COPY FOR BOWRA,J W DUYFY,FRANCIS P GUERRIERO,JOSZPE R
GORDON, P L EACH ADDITIONAL BOWYER,L RAY ECXENRODE, MRS JUDY C GUTT,DONALD J
HALLCCK, ROBERT W PILING SUBJECT BOvCE,W N EDELE,JANES S HAAS,L J
SHANWAY,N B BRADY, PAUL T EITELBACH,DAVID L RAGELBARGER, D W
HASKELL, BARRY G BFANDT,RICHARD B ELLIOTT,R J EAGGERTY,JOSEPH P
JARVIS,JOHN P 1211 BRPECE,HARRY T IIY B’Y,T ¢ NALPIN, SHLOMOD
JARZYNA,E S 1273 EFEVNER,P A ERB,R W BALL,ARDREN D JR
JUDICE,CHARLES W 135 PPIGGS,P R M ESSERMAN, ALAN R HALL,MILTON S JR
+KEEFAUVER,W L 3812 BRIGET,N P ETRA, RICRARD B HAKILTON,MISS P A
FIEBURTZ,R BRUCE asss PRISSON,R J . PABISCR,NICHAZL P HANSEN,)RS G J
LARSEN, ARTHUR B ase1 BROWR, COLIN ‘W FELS,ALLIN M HARSEN R J
+LIMR,J O 8222 BROWN,G W LTS, N J HARRSYNIN,J
LUKACS,N E 8215 BROWN,W STANLEY YETTE,CHARLES J HARKNESS MRS CAROL J
LYCKLAMA, HEINZ 8238 ¥UCK,2 D FICLIUTZI, MISS M T HARPER,)RS G F
MANCUSI,M D coospe RORDETTE, WILLIAM A FISCHER,H B HARRISON, NEAL T
*AARANZANO, JOSEPH ¥ BUTIIZN, PAUL B YISCHER,W C HARTHANN RRCY L
MARKTHALER,MISS G E ABRAHAM, STOART A BYPNE, ZDMARD R PISHER,KRS DIDINA HARTMANN, ROBERT H ,
MCDONALD, H S ACKERMAR,A P CABLEZ,GORDON G JR FLARAGAN,J L HARTMAN,D W
SMILLER,S F AHO,A V CAMLET,J V JR FLIISCEER, HERBERT I EARTWELL,WALTIR T
MINA, RENT V AHRENS, RAINER B CARPAN,J B JORD,GERARD A BARUTA, X
ROUNTS, FRANK % ALDEZRTS, BARBARA A CARCEO,A ¥ FORT,JANES W EASTTO, EOWARD D
+ NAMED BY AUTHOR > CITED AS REFERTNCE BOURCE
297 TOTAL
RADY,J B3 N 7B201; /-~
™-78-1352-1 TOTAL PAGES 15
TO GEP A COMPLETE COPY:
PLEAS? SEND A COMPLETE COPY TO THE ADDRESS SHOWN ON THE
OTHER SIDE.
'. BE SURE YOUR CORRECT ADDRESS IS GIVEM ON THE OTRFP SIDE. WO ERVELOPE. WILL BE NEEDED IF¥ YOU SIMPLY STAPLT THIS COVER
SHEET TO THE COMPLETE COPY. ~~

2. FOLD THIS SHEET IN FALF WITH TRIS SIDE OUT AND STAPLY,

3, CIRCLE THE ADDRESS AT RIGHT. USE NO ENVELOPE.

1P COPIES ARE NO LOWGER AVAILABLE PLEASE FORWARD THIS
REQUEST TO THE CORRESPONDENCE FILES.

(LI GSSISRL SO

Cm,

(o

subject:

Bell Laboratories

Implementation of Large Contlguous date: January 4, 1974
Files and Asynchronous I“0 in UNIX
- Case 39394 from: H. Lycklama

T™-78-1352-1

Merorandum for File

INTRODUCTION

The UNIX operating system (réf. 1) running on the DEC
PDP-11/45 computer was chosen to 'support picture processing
research in Center 135 (ref. 2) because of the large amount of
support software which had been written for it. However picture
processing requires the dynamic creation; deletion and accessing
of large files (up to 32,000,000 bytes)., The version of UNIX
available at the time was limited to 65,536 byte files. There
was also the need to be able to read and write large amounts of
data for real-time applications in an asynchronous manner. These
requirements have led tc the design and implementation of large
contiguous files and asynchronous I/0 within the framework of

the UNIX operating system as described below.

LARGE CONTIGUOUS FILES

_ Large contiguous files are implemented within the framework
of ¢the UNIX file system. That is, the names of the files follow
the UNIX convention of a simple hierarchical structure. Each
large contiguous file has an iﬁode associated with it which con-
tains a bit in the "flag" word indicating that it is a large con-
tiguous file 'and is to be treated specially. The bytes in the

inode for such a file are used as follows:

0-1 flags -

2 number of links

3 user ID of owner

4=5 size(least sig. word) in bytes

6 volume number of pack on which file exists
7-21 must h¢ zero

22-25 creation time
26-29 modification time
30-31 size (most sig. word) in bytes

The flags are used as follows:

100000 inode is allocated
040000 directory

020000 file has been modified (always on)
010000 1large file

004000 big contiguous file
000040 set user ID on execution
000020 executable

000010 read, owner

000004 write, owner

000002 read, non-owner

000001 write, non-owner

These files are implemented only for RP02 and RPO3 disk
packs. The RP02 disk pack contains 203 cylinders of which only
the first 200 are used for the file system. The RP03 disk pack
contains 406 cylinders of which only the first 800 are used for
the file system. For hoth packs, each cylinder has 20 tracks of

10 (256 word) sectors each. Thus the total capacity of an RPO2

disk pack is 20M bytes whereas that of the RP03 disk pack is 40M

(™

)

bytes.,

In a typical UNIX installation, one pack is used as a per-
manently mounted system pack with one or more file systems of
7000 sectors each on the pack. Any number of other packs may be
mounted or dismounted without disrupting the operation of the
ONIX time-sharing system., On the system pack, the area not
reserved for the UNIX file systems are set aside for contiguous
files. On the other dismountable packs, the complete pack is
used for the allocation of contiguous files. For example, for an
RPO3 system pack with 5 UNIX file systems the last (80000-5*7000)
= 085000 sectors on the pack are used for contiguous files., On a
dismountable RP03 disk pack, the total 80000 sectors are used for

contiguous files.

The contiguous files are allocated on the disk area outside
of the file systems defined by the UNIX bit maps. The area on
each pack used for contiguous files is defined by a volume label
at the beginning of each dismountable pack (rp! ... rp7) . The
volume label for the system pack occurs just beyond the end of
the UNIX file systems. Files are allocated in units of a track.
In the contigquous file area, tracks are assigned as follows:

1 volume label and bit map |

2-x VTOC entries

(x+1)-n contiguous file areas
where (x-1) tracks are devoted to VTOC entries and the last (n-x)
tracks are devoted to the actual contents of the contiguous
files. Unless otherwise stated, the following values of x, n are

used:

x n
RP02 system pack 20 S00
RP03 system pack 20 8500
RP02 dismountable pack 20 4000
RP03 dismountable pack 20 8000

The sectors in the first track are used as follows:

volume label

1
2 bit map (bit per 2 tracks)
3-10 unused

The words in the first sector of the first track are used as

follows:
0 volume number
1-2 date labelled ;
2 number of tracks available for file system
(] number of tracks for label
5 number of tracks for VTOC entries
6. size of VTOC entry (in bytes)

7-89 character string label supplied by pack owner
50-254 wunused (zero)
255 checksum

The next sector contains the bit map for the contiguous file area

on the pack. Each bit represents 2 tracks. A 1 bit indicates an

un-allocated track whereas a 0 bit indicates an allocated track.

The VTOC entries currently consist of 68 bytes of informa-
tion on the contigquous file which it describes. Thus one sector
contains 8 VTOC entries. The VTOC entries contain sufficient
information to reconstruct the bit map if required. The bytes in
a VTOC entry are used as follows:

0-31 complete path name of file

32-33 inode of file

34-35 idev of inode

36-39 size of file (in bytes)

40-41 record size (in bytes)

42-43 starting track number

44-us number of consecutive tracks allocated
46-61 - other extents :

62-63 checksum

{

-5-

To find the starting disk secior address of a contiguous file the
i-node and idev number of the file are hashed to obtain a pointer
to a VTOC block on disk. This :disk sector is read in and
searched for the given i-node and idev, which are the keys to the

VTOC entry.

To support these large contiguous files, the following sys-
tem calls have been added to the UNIX operating system:
sys alloc
sys pckm
sys pcku
sys dseek

These system routines are invoked by passing the address of the

list of arguments in ro0.

alloc: - allocate disk space for a conéiguous file

mov Sarg,x0
sys alloc

arg: name
mode
packvol
ntracks
rsize
where
name - points to null-terminated string naming a file
mode - mode bits of file as in "sys creat®
packvol - pack volume number

ntracks - number of consecutive tracks to be allocated

rsize - record size

pckm: - mount given volume number on given drive number

mov Sarg,r0

(=~

Lo

-7-

booted up and "/etc/init® is executed. Other packs must be
mounted specifically. To enable the user to mount and dismount
other packs at will and also to allocate disk space for contigu-

ous files easily, the following commands have been written:

packf

This program allocates space on a given volume number with
sufficient consecutive space to hold the given number of records.

Space is allocated in 2 track quanta. Packf is invoked by means

.oﬁ:

packf name mode volume rsize nrecords

where name - pathname of file to be created
mode - mode bits of file
volume - pack volume number
rsize - size of a record

nrecords - maximum number of records in file
acki

This program initializes a disk pack for 1large contiguous
files with all VTOC entries zeroed out and a label put at the
beginning of the pack. The bitmap is appropriately initialized.

The program may only be invoked by the super-user as follows:
packi drive volume label

where drive - physical drive number
volume - volume number to be put on pack

label - up to 80 character user specified label

ackm
A pack is mounted on the given drive numbef by means of:
packm drive

where drive is the given drive number. Before a volume can be
mounted the label block checksum is verified. Upon a successful

mount the volume nymber of the pack is printed out.

packu
A given volume number is disméunted on a drive by means of:
packu volume

where volume is the given volume number that is to be dismounted.

packl

In order to f£ind out what contiguous files exist on a volume

on a given drive, one may invoke:
packl drive

where drive is the given drive number. This program will print
out all the pertinent information about the volume mounted on the
given drive including a list of all files on the volume. It will
essentially give a synopsis of the information contained in the
volume label sector and give an indication of how many tracks of
the volume have been allocated for files and how many tracks are
left unalloéated and may still be used. A file map is printed
out indicating which VTOC block has been uséd. where the inode

for the file exists, the name of the file, its size in bytes and

-9-

the total number of tracks which have been allocated for the

file.

Two UNIX commands have been modified to give the user more
information about his contiguous files. The "ls® command will
now indicate whether or not a file is contiguous by means of a
c" in the mode bits of the file description. The "stat" command
will indicate the mode of a file (whether contiguous or not) and
will also give the true size of the file (in bytes) making use of

the most significant size word in the inode.

As far as UNIX code is concerned, all contiguous files may
be accessed in the normal way by means of the standard UNIX sys-
tem calls such as "open, close, read, write, stat", when a nsys’
creat"” is done on a contiguous file, its length is truncated to
zero tut the space which had been allocated for it is 1left in-
tact. To make full use of these large contigquous files, one can
utilize the asynchronous I/0 features which have_ been added to

UNIX.

ASYNCHERONQOUS 170

For some real-time applications involving large amounts of
data, it is often necessary to perform more sophisticated i/o
operations than possible with the standard file read and write
operations in UNIX. Specifically it is desirable to be able ¢to
do I/o. directly to or from the user’s address space without the
use of the system side buffers. The reasons for this are two-
fold - reduce system oveghead time and allow the input or output

of more than 512 bytes of data at a time. In some cases one

- 10 -

would also like to initiate more than one transfer of data simul-
taneously and then wait for them to finish separately thus reduc-
ing transfer set-up times where these are critical. PFor in-
stance, using asynchronous I/0 directly into theAuser’s area, one
can transfer a track of daf% (2560 words) from an RP disk in no
more than two revolutions of the disk. Using the standard UNIX
read would take more than 10 revolutions of the disk as 10

separate I/0 operations are required.

asynchronous 1/0 routines 'pave been incorporated into the
UNIX operating system to allow one to initiate I/0 directly to or
from such block-oriented devices as magtape, dectape and all disk
devices., For magtape specifically, one is now able ¢to read or
write records which are not necessarily 512 bytes long. The
implementation of large contigquous files also-allows one to ini-
tiate asynchronous I/O to or from these files. . An error condi-~
tion will be indicated however if one attempts to initiate asyn-

- chronous I/O to or from a standard UNIX file.

Two new system calls have been added to the UNIX operating
system in order to implement asynchronous 1/0:
sys srtio
sys statio

srtio:

This call is invoked to initiate asynchronous I/0. 1Its cal-
ling procedure is the same as for "sys read" and "sys write”:

(file descriptor in r0)
sys srtio;buffer;nbytes
(system buffer descrlptor index in rO)

(-~

(™~

- 11 -

The file descriptor is the word returned from a successful open,
creat or alloc and determines whether the I/0 operation to be
initiated is a read or a write. Here "buffer" is the address of
tke buffer into which or from which the "nbytes" of data are to
be transferred. Upon return from the system the I/0 has not been
completed yet, but the system buffer descriptor which has been
allocated for this I/0 transfer is returned in r0 and must be
remembered when testing the status of this particular 1I/0
transfer. The error bit will be set if the I/0 Eould not be ini-
tiated. cConditions for error may include: bad buffér address,
"nbytes® which would cause transfers ouﬁside the user”s address
space, bad file descriptor 6r no more system buffer descriptors
available. Currently only 8 buffer descriptors are available in
the system to be used for asynchronous 1I/0 transfers. This

number is an assembly parameter and may be increased if need be.

i

statio:

This system call is invoked to check the status of a given
asynchronous I1/0 transfer as follows:

mov $hufst,r0
sys statio

e e

L AN

bufst: bptr
flags
nbytes

where bptr - index to the system buffer descriptor which
describes the I/O transfer requested as passed
back by "sys srtion
flags - status of this particular I/0 operation
04000 - read active
02000 - read outstanding
01009 - write active
00400 - write outstanding

nbytes - number of bytes returned.

The user must pass the index to the system buffer descriptor
which describes the 1/0 transfer requested as passed back by "sys
srtio® in fbufst", The flags and nbytes are returned to him in

"bufst+2" and "bufst+yn respectively,

All asynchronous 1/0 initiated must be waited for, but the
order in which they are waited for is not important. The £lag
bits are returned as zero upon a successful completion of the 1/0
transfer. The error bit will be set upon an error condition
detected such as physical I/0 errors or if the user_is not the
owner of this system buffer descriptor. While there is any out-

standing asynchronous 1/0 for a user, he is guaranteed not to be

swapped out. Upon exiting from a process all asynchronous 1I/0

started is first waited for.

A simple example of +the use of <these asyﬁchronous I/0
routines is given in Appendix A. The program copies data from an
RP02 drive 0 to an RP02 drive 1, one track at a time. Total exe-
cution time is less than 5 minutes compared to almost 80 minutes

by using the standard "sys read" and "sys write® routines in

UNIX.
MH-1352-HL-JER ' H. Lycklama
Att,

References

Appendix A

"

7=

- 13 -

References

(1) M¥-71-1273-4,"The GNIX Time-Sharing System®
D. M. Ritchie.

(2) J. D. Beyer, Dept. 1353,

Appendix A

/ copy rp0 to rpt1 using asynchronous io routines

srtio = S0.
statio = 51.
nsect = 10,

sys open;rpl:0
bes oerr
mov r0,rptr
sys open;rpi;1
bes oerr
mov r0,wptr
mov $200,%203.,r3
2: .
mov rptr,ro
sys srtiosbuffer;nsect*512,
bes rerr
mov r0,bufst
1:
mov $bufst,r0
sys statio
bes serr
mov $bhufst,ro
kit $7400,2 (r0)
bne 1b
mov wptr, r0 .
sys srtio;buffer;nsect*512,
bes werr
mov r0,bufst
1:
mov g¢bufst,ro
sys statio
bes serr
mov $bhufst,ro
bit $7400,2(x0)
bne 1b
sub $nsect,r3
bne 2b
sys exit
oerr: 4
rerr: 4
werr: 4
serr: a
rptr: 0
wptr: 0

rp0: </dev/rp0O\0>

rpl: </dev/rpi\0>
.even

bufst: .=.+6

buffer: .=.+{nsectx*512,]

