"~~~

@ Bell Laboratories

/062

Cover Sheet for Technical Memorandum

The information contained herein is for the use of employees of Beil Laboratories and is not for publication (see GE/ 13.9-3)

Title -

MERT - A Multi-Environment Real-Time Date— July 18, 1975

Operating Syster

~ ™. T75-1352-7
o
Other Keywords -
Author(s) Location_and Room Extension Chorging Case— 39394
= Bayer, D. L. MH 7C-207 3080
- Lycklama, H. MH 7C-211 6170 Filing Case— 39394-11
ABSTRACT
MERT 1is é multi-environment real-time operating
system for the Digital Equipment Corporation PDP-11/45 and
7= 11/70 computers. It is é structured operating system built
on top of a kernel which provides the basic services such
as memory management, process scheduling and trap handling
needed to bulld various operating system environments. Real-
time response to processes 1is achieved by means of preemptive
priority scheduling. The file system structure is optimized
for real-time response. Processes are built as modular
A~ entities with data structures that are independent of all
\:: other processes. Interprocess communication is achieved by
means of messages, event flags, shared segments and shared
files. Process ports are used for communication between
- unrelated processes. This memorandum was submitted as a
g:' paper to be presented at SIGOPS Conference, November 17, 1975.
~ T
Pages Text 20 Other 9 Total __33
No. Figures 4 No. Tables __ O No.Refs. __ O

£-1932-C4 (6-73)

SEE REVERSE SIDE FOR DISTRIBUT.viv uidT

BELL TELEPHONE LABORATORIERS, INC.

COMPLETE MEMORANDUM TO
CORRESPONDENCE FILES

OFFICIAL FILE COPY
PLUS ONE COPY FOR

EACH ADDITIONAL FILING

CASE REFERENCED

DATE FILE COPY
(FORM E-1328)

10 REFERENCE COPIES

ALBERTS,BARBARA R
ANDERSON,MRS C M
*ARDIS,R B
ARNOLD,S L
BAYER,DOUGLAS L
BIRCHALL,R H
BIREN,MRS IRMA B
BLUM,MRS MARION
BOYD,GARY D
BRANDT, RICHARD B
BROWN,W STANLEY
BUCHSBAUM, S J
BURROWS,T A
CANADAY,RUDD ¥
CARDOZA,WAYNE ¥
CARRAN,J H
CARR, DAVID C
CHRISTENSEN,C
CLOGSTON,A M
CONDON,J H
COOK, THOMAS J
COREY,D A
CRANE, RODERICK P
CUNNINGHAM, STEPHEN J
CUTLER,C CHAPIN
DE JAGER,D S
DICK,GBORGE W
DOLOTTA,T A
DOWD, PATRICK 5
EDMUNDS,T W -
ERRICHIELLO,PHILIP M
FEDER,J
FORTNEY,V J
FRANK,H G
FREENY,S L
GANNON, T F
GATES,S W
GILLETTE, DEAN
GICRDANO, PHILIP P
GLASSER,ALAN L
SRAVEMAN,R F
HAIGHT,R C
HAMILTON, MRS L
HAMMING,R W
+HANNAY,N B
HASKELL,BARRY G
HUPKA,MRS FLORENCE
HYMAN, B

COMPLETE MEMORANDUM TO

JACKOWSK1,D J
JOHNSON, STEPHEN C
KAPLAN,A E
KAUFMAN, LARRY S
KAYEL,R G

REESE,W M
KEVORKIAN,DOUGLAS E
LARSEN, ARTEUR B
LESSEK, PETER V
LIMB,J O

LORENC, ANTHONY
LOZIER,JOHN C
LUDERER,GOTTFRIED W R
LYCKLAMA, HEINZ
LYONS,T G

MACHOL,R E JR
MALTEANER, W A
MARANZANO, JOSEPH F
MARGOTTA, JUSTINE P
MASHEY, JOBN R

MC ILROY,M DOUGLAS
MCDONALD,E S
MILLER, S E

MORGAN, § P
NINKE,WILLIAM H.

O CORNELL,T F

O NEILL,DENNIS M
OSSANNA,J F JR
PATEL,C K N
PERDUE,R J
PEREZ,MRS CATHERINE D
PERNESKI,A J
PETERSON, RALPH W
PHILLIPS,S J
PILLA,MICHAEL A
PINSON, ELLIOT N
POPPER, C
+PRIM,ROBERT C
ROBERTS,CHARLES S
ROCHKIND,M J
RODIHAN,MRS PATRICIA A
ROMITO, LETITIA J
ROSLER, LAWRENCE
SATZ,L R
SIX,FREDERICK B
SLICHTER,W P
SMITH,D W

SPENCE, NORMAN A
STAMPFEL, JOHN P
STEVENSON,D E
STURMAN,JOEL N
SWANSON,GEORGE K
TAGUE, BERKLEY A
TERRY,M E
TEWKSBURY, S K
THOMPSON,JOHN S
THURSTON,R N
TILLOTSON,L C
UNDERWOOD, R W
VIGGIANO,F A

DISTRIBUTION
(REFER GEI 13.9-3)

COMPLETE MEMORANDUM TO

WALKER,MISS E A
WANDZILAK,P D
WATKINS,G T
WEBB, FRANCIS J
WEHR,L A
WELLER,DAVID R
WHITE, RALPH C JR
WILSON,GEOFFREY A
W00D,J L
YAMIN,MRS E E
YOUNG, JAMES A
121 NAMES

COVER SHEET ONLY TO

CORRESPONDENCE FILES

4 COPIES PLUS ONE
COPY FOR EACH FILING
CASE

ABRAHAM, STUART A
ACKERMAN,A F
AHO,A V
AHRENS,RAINER B
ALCALAY, DAVID
ALLEN,JAMES R
ALLES, HAROLD G
ALMQUIST,R P
AMORY,R W
AMOSS,JOHN J
ANDERSON,G L
ANDERSON,M M
ARNOLD, GEORGE W
ARTHURS, EDWARD
ATAL.B S

BAKER, BRENDA S
BALDWIN,GARY L
BARTLETT,WADE S
BASEIL,RICHARD J
BAUER, BARBARA T
BAUER,MS H A
BAUGH,C R
BECKER,R A
BECKETT,J T
BERGLAND,G DAVID
BERNSTEIN, LAWRENCE
BEYER, JEAN-DAVID
BILOWOS, RICHARD M
BLEICHER,EDWIN
BLINN, JAMES C
BLY,JOSEPH A
BODEN,F J
BOURNE, STEPHEN R
BOWERS,J 1
BOWYER,L KAY
BOYCE, W M
BRAINARD,RALPH C

COVER SHEET ONLY TC

BREITHAUPT, ALLAN K
BROWN,COLIN W
BURNETTE,W h
BUTLETT,D L
BUTZIEN,PAUL
BYRNE, EDWARC
Bzowy,D E
CABLE,GORDON G JR
CAMPBELL,J H
CANDY,JAMES C

CASEY ,JOSEPH P
CASPERS,MPS BARBARA E
CAVINESS,JOHN D
CHAMBERS,J M
CHAMBERS,MRS B C
CHANG, HERBERT Y
CHANG,S~-J

CHAPPELL,S G

CHEN, STEPHEN

CHER,T L

CHERRY,MS L L
CHIANG,T C

CHODROW ,MARK M
CHRIST,C W JR
CIRILLO,CARL
CLAYTON,D P
CLIFFORD, ROBERT M
CLOUTIER,J E

COBEN, ROBERT M
COHEN, HARVEY
COLDREN, LARRY A
COLE,LOUIS M

COLE,M O

COLLIER, ROBERT J
COLTON,JOHN R
COPP,DAVID H
COSTANTINO,B B
COSTON, WALTER P
COULTER,J REGINALD
COURTNEY PRATT,J S
CRAGUN,D W

CRUME, LARRY L

D STEFAN,D J
DAVIDSON, CHARLES L
DETRANO,MRS M K
DEUTSCH,DAVID N
DICKMAN,B N
DIMMICK,JAMES O
DOMPIERRE,J A

3 m

‘DONOPRIO, L J

DREIZLER, HOWARD K
DRISCOLL, PATRICK J
EDELSON, D
EITELBACH,DAVID L
ELLIOTT,R J

ELY,T C

ESSERMAN, ALAN R
ESTOCK,R G
FABISCH,MICHAEL P
FARGU,GEORGE A

TM-75-1352-7

COVER SHEET CilY IU

FIORE,MRS RHODA 7
FISCHER.,H B
FLARAGAN,J L
FLEISCHER, HEFE o¥7T I
FLUHR, ZACHARY C
FOUGHT,B T
FOUNTOUFID1IS,A
FOWLER,BFXZ
FOY,J C

FRANKLIN, DANIEL L
FRANK,MISS A J
FRANK, RUDOLPE J
FRASER,A &
FREEDMAN,M 1
FREEMAN,K GLENN
FREEMAN, K DON
FREIDENREICH,MRS ¢
FROST,H BONNELL
FOLTON,ALAN W
GAJEWSKA,MS HANNA O
GARCIA,R F
GAY,FRANCIS A
GEER,EUGENE W Jk
GELLINEAU,A C
GELLIS,H s
GEPNER, JAMES F
GEYLING,F T
GIBB,KENNETH 7
GIBSON,H T J&x
GIMPEL,JAMES F
GITHENS,JOHN A
GITLIN,RICHAFD U
GLUCK, F
GOETZ,FKANK M
GOGUEN,MS NANCY
GOLABEK,MISS kK
GOLDSTEIN,A JAY
GORDON, P L
GRAHAM,R L
GRAMPP,F T
GREENBAUM,H J
GREENE,MRS DELTA A
GREENHALGH,H WALN
GROSS,ARTHUF 3
GUERRIERO,JUSEPH &
HAFER,E H
HAGELBARGER,D W
HAGGERTY,J F
HAGGERTY,JOSEP: |
HAHN,J R JK
BALFIN, SHLOMO
HALL,ANDREW D J¢
HALL,MILTON S J7
HAMILTON, FATRICIZ2
HANSEN,MRS 5 J
HARRISON, HEAL T
BARTWELL,WALTLF T
HARUTA, K

HASZTO, EDWAKL, o
HAUSE,A D

IVIE,EVAN L VOGEL,G C BREECE, HARRY T III FELS,ALLEN M HEATH,SIDNEY ¢ II:
¢ NAMED BY AUTHOR > CITED AS REFERENCE SOURCE s
432 TUTAL
MERCURY SPECTFICATION et ceerarrocsanasonecactnseososensseesoscsaimeceesesessssesseenassoneeanssessessassassasesnsecccsesecsesncens
COMPLETE MEMO TO:
135-DPH 13-DIR 11-EXD 15-EXD 16-EXD 127-SUP 135-sup
UNOS = UNIX/OPERATING SYSTEM
COVER SHEET TO:
135-MTS 9152-MTS 1277 1273 8234
coos = TOMPUTING/OPURATING SYSTEMS/SURVEY PAPERS ONLY
RADY,J TM=75-13%¢-7
MH 7B201 TOTAL PAGES 3%

TO GET A COMPLETE COPY:

PLEASE SEND A COMPLETE COPY TO THF ADDRESS SHOWN i litn

1. BE SURE YOUR CORRECT ADDRESS IS GIVEN ON THE OTHER S8IDE.
2. FOLD THIS SHEET IN HALP WITH THIS SIDE OUT AND STAPLE.
3. CIRCLE THE ADDRESS AT RIGHT. USE NO ENVELOPE.

OTHEK B1DE

KO ENVELOPE WILL BE NEEDED IF YOU SIMPLY STAPLL ‘1M1, €7Yh¥
SHEFT TO THE COMPLETE COPY.

IF COFIES ARE NO LONGER AVAILABLE PLEASE FOURWAKD THIL
REQUEST TU THE CORRESPONDENCE FILFS.

(“—

~

LN

™

o~
Bell Laboratories
& suect MERT - A Multi-Environment Real-Time date: July 18,1975
~) Operating System
from: D. L. Bayer
BH. Lycklama
TM-75-1352-7
7
~)
Memorandum for File
1. Introduction
MERT is an executive which provides a more conducive en-
- vironment for the implementation of operating systems than a raw
machine. The executive establishes an extended instructions set
via system primitives vis-a-vis the virtual machine approach of
CP 67. Operating systems are implemented on top of MERT and
define the services available to user programs. The operating
systems are independent. Communication’and synchronization primi-
tives and shared memory permit varying degrees of co-operation
:::} between independent operating systems.
The MERT system runs on the DEC PDP-11/45 and PDP-11/78 com-=
puters (1l). It requires all three processor modes (kernel, su-
-~ pervisor and user) and both the instruction (I) and data (D)
~) address spaces provided by these machines. The system consists
- of a number of levels of software as described in a previous

paper (2), in which each higher level has fewer access permis-

sions than the level below it. The basic kernel procedures exist

in the first level (Figure 1); they implement the system primi-
tives. The second level of software consists of privileged
kernel-mode processes which have access to the device registers
but not to sensitive system data. The various operating system
supervisors run at the third software level and provide the en-
vironment which the user sees. At the highest software level are

the actual user application programs.

One of the basic design goals of the system was to build
modular and independent. processes having data structures and
tables which are known only to the particular process. Fixing a
"bug"” or making major internal changes in one process does not
affect the other processes with which it communicates. The work
described here builds on previous operating system designs
described by Dijkstra (3) and Brinch Hansen (4). The primary
differences between this system and previous work lies in the
rich set of inter-process communication techniques and the exten-
sion of the concept of indepe: . nc¢ modular processes, protected
from other processes in the system, to the basic 1/0 and real
time processes. It can be shown that messages are not an ade-
Quate communication path for some real-time problems (5). Con-
trolled access to shared memory, and software generated inter-
rupts are often required to maintain the integrity of a real time
system. The communication primitives were selecte@ in an attempt
to balance the need for protection with the need for real time
response. The prinitives include event flags, message buffers,

inter-process system traps, process ports. and shared segments.

()

()

This paper gives a detailed description of the system design
including the basic kernel, and a definition and description'df
processes and of segments. A detailed discussion of the communi-
cation primitives follows. The structure of the file system is
then discussed along with how the file manager and time-sharing
processes make use of the communication primitives. Some trade-
offs are given that have been made for efficiency reasons thereby
sacrificing some protection. Some operational statistics are

also included here.

2. Segments

We define a logical segment as a Piece of contiguous memory,
32 to 32K l6-bit words long, which can grow in increments of 32
words. Associated with each Segment are an internal segment
identifier and an optional global name. The segment identifier
is allocated to the segment when it is created and is used for
all references to the segment. The global name uniquely defines
the initial contents of the Segment. A segment is created on
demand and disappears when all processes which are linked to it
are removed. The contents of a Ssegment may be initialized by
copying all or part of a file into the segment. Access to the
Segment can be controlled by the creator (parent) as follows:
1) The segment can be private - that is, available only to
the creator.
2) The .segment can be shared by the creator and some or all
of its descendents (children). This is accomplished by

pPassing the segment id to a child.

3) The segment can be given a name which is available to all
Processes 1in the system. The name is a unique 32-bit
number which corresponds to the actual location on secon-
dary storage of the initial segment data. Processes
without a parent-child relationship can request the name
from the file system and then attempt to create a segment
with that name. If the segment exists, the segment id is
returned and the segment user count 1is incremented.
Otherwise the segment is created and the process initial-
izes it.

For efficiency, reentrant code segments of frequently exe-

cuted programs are often shared. On the other hand data segments

are usually private and are not shared.

3. Processes

A process is a collection of related logical segments exe-
cuted by the processor (2). Processes are divided into two
classes, kernel and supervisor, according to the mode of the pro-

cessor while executing the segments of the process.

Kernel processes are driven by software and hardware inter-
rupts, execute at processor hardware priority 3 to 7 (@ being the
lowest and 7 the highest priority), are locked in memory, and are
capable of executing all privileged instructions. Kernel
processes are used to control peripheral devices and handle func-
tions with stringent real-time response requirements. The virtu-
al address space of each kernel process begins with a short

header which defines the virtual address Space and various entry

"‘Vj

~—

-

)

~-

points (see Figure 2). Up to 12K words (segmentation registers 3
- 5) of instruction space and 12K words of data space are avail-
able. All kernel processes share a comﬁon stack and can read and

write the I/0 registers.

To reduce duplication of common subprograms used by indepen-
dent kernel processes and to provide common data areas between
independent cooperating kernel and supervisor processes, three
mechanisms for sharing segments are available. |

The first type of shared segment, called the system library,
is available to all kernel processes. The routines included in
this library are determined by the system administrator at system
generation time. The system library begins at virtual address
1490008 (8) (segmentation register 6) and is present whether or not
it is used by any kernel processes.

The second type of shared segment, called a public library,
is assigned to segmentation registers four or five of the process
instruction space. References to routines in the 1library are
satisfied when the process is formed, but the body of the segment
is loaded into memory only when the first process which accesses
it is loaded. Public libraries may be pure code or may contain
data areas for inter-process communication. A process may share
the system library as well as a public library simultaneously.

A third sharing mechanism allows a parent to pass the id of
a segment that is included in the address space of a kernel pro-
cess when it is created. This form of sharing is useful when a

hierarchy of cooperating processes is invoked to accomplish a

task.

All processes which execute in supervisor mode and user mode
are called supervisor processes. These processes run at proces-
sor priority zero or one and are scheduled by the kernel
scheduler process. The segments of a supervisor may be kept in
memory, providing response on the order of several milliseconds,
or supervisor segments may be swappable, providing a response
time of hundreds of milliseconds.

The virtual address space of a supervisor consists of 32K
words of instruction space and 32K words of data space in both
supervisor and user modes. Of this 128K, at least part of each
of three segmentation registers (12K) must be used for access to:

1) the process control block, a segment typically 128 words

long, which describes the entire virtual aadress space of
the process to the kernel and provides space to save the
state of the process during a context switch.

2) the process supervisor stack and data segment.

3) the read-only code segment of the superviso;.

The rest of the address space is controlled by the superviso:
through EMT traps to the kernel. Figure 3 illustrates the virtu-
al memory layout of a time-sharing supervisor described in a

later section.

4. The Kernel
The kernel consists of a process dispatcher, a trap handler,
and routines (procedures) which implement the system primitives.

Approximately 4.5K words of code are dedicated to these modules.

-«

()

()

()

()

-7 -

The process dispatcher is responsible for saving the current
state and setting up and dispatching to all kernel processes. It
can be invoked by an interrupt from the programmed interrupt
register, an interrupt from an external device, or ‘an inter-
process system trap from a supervisor process (an EMT trap).

The trap handler fields all traps and fauits and, in most
cases, transfers control to a trap handling routine in the pro-
cess which caused_the trap or fault. For the purposes of debug-
ging, the "break point trap" executed from supe;visor or kernel
mode will cause an image of the process to be written in a file
and the process to be terminated.

The kernel primitives can be grouped into eight logical
categories. These categories can be subdivided into those which
are'available to all processes and those which are available only
to supervisor processes. The primitives which are available to
all processes are:

1) Interprocess communication and synchronization primi-
tives. These include sending and receiving of messages
and events, manipulation of process ports, waking up
processes which are sleeping on a bit pattern, and set-
ting the sleep pattern.

2) Attaching to and detaching from interrupts.

3) Setting a timer to cause a time-out event.

4) Manipulation of segments for the purposes of I/0. This
includes locking and unlocking segments and marking seg-
ments altered.

5) Setting and getting the time of day.

-8 -

The primitives available only to supervisor processes are:

6) Primitives which alter the attributes of the segments of
& process. These primitives include creating new seg-
ments, returning segments to the system, adding and
deleting segments from the process address space, alter-
ing the access Permissions, and turning supervisor and/or
user D-space registers on or off.

7) Altering scheduler-related parameters by road blocking,
changing the scheduling priority, or making the segments
of the process nonswap or swappable.

8) Miscellaneous services such as reading the console
switches.

Closely associated with the kernel are the memory management
and scheduler processes. These two processes are special in that
they reside in the kernel segments. In all other respects they
follow the discipline established for kernel processes.

The memory manager process communicates with the rest of the
system via messages and is capable of handling three types of
requests:

1) Setting the segments of a process into the active state,
making space by swapping or shifting other segments if
necessary. |

2) Loading and locking a segment contiguous with other
locked segments to reduce memory fragmentation.

3) Deactivating the segments of a process.

The scheduler process is responsible for scheduling all

Supervisor-mode processes. The scheduler utilizes time-sliced,

()

()

()

()

-9 -

- round robin‘and preemptive priority scheduling techniques. The

main responsibility of the scheduler is to select the next pro-

cess to be executed. The actual loading of the process is accom-

plished by the memory manager.

5. Inter-Process Communication

A structured system requires a well-defined set of communi-
cation primitives to achieve inter-process communication and
synchronization. The MERT system makes use of the following com-

munication primitives to achieve this end:

(l) event flags

(2) message buffers
(3) EMT traps

(4) shared memory
(5) files

(6) process ports
Each of these is discussed in further detail here.

S.1 Event Flags

Event flags are an efficient means of communication between
processes for the transfer of small quantities of data. Of the
16 possible event flags per process, eight are predefined by the
system for the following events: wakeup, timeout, message ar-
rival, hangup, interrupt, quit, abort and initialization. The
other eight event flags are definable by the processes using the
event flags as a means of communication. Events are sent by

means of the kernel primitive:

- 10 -
event (procid, event)

Sending an event causes the system to set the appropriate bit for
the process and trigger the programmed interrupt register at the
processor priority of the receiving process. When control is
passed to the process at its event entry point the event flags
are in its address space. Supervisor processes may selectively
inhibit the receipt of particular events or may choose to ignore
all events. This communication primitive is invoked for effi-

cient process synchronization.

5.2 Message Buffers

The use of message buffers for inter-process communication
was introduced in the design of the RC4000 operating system (4).
The SUE project (6) also useu a wuessaje sending facility and the
related device called a mailbox to achieve process synchroniza-
tion. We introduce here a set of message buffer primitives which
provide an efficient means of inter-process communication and

synchronization.

A kernel pool of message buffers is provided, each of which
may be up to a multiple of six times 16 words in size. Each mes-
sage consists of a seven word header and the data being sent to
the receiving process. The format of the message is specified in

Figure 4. The primitives available to a process consist of:

alocmsg (nwords)

gueuem(message)

gueuemn (message)

8

- 11 -

dequeuem(process)
.dqtype(process)
messink (message)

freemsg (message)

To open a communication channel between two processes Pl and P2,
Pl must allocate a message buffer using alocmsg, £ill in the
appropriate data in the message header and data areas and then
send the message to process P2 using queuem. Efficiency is
achieved by allowing Pl to send multiple messages before waiting
for an acknowledgement (answer). The acknowledgement to these
messages is returned in the same buffer by means of the messink
primitive. Thg message buffer address space is freed up automat-
ically if the message is an acknowledgement to an acknowledge-
ment. Buffer space may also be freed explicitly by means of the
freemsg primitive. When no answer is expected back from a pro-

cess, the queuemn primitive is used.

Synchronization is achieyed by putting the messages on P2°s
message input queue using the link word in the message header- and
sending P2 a message event flag. This will immediately invoke
the scheduling of process P2 if it runs at a higher priority than

Pl. Process Pl is responsible for filling in the from process

number, the to process number, the type and the identifier fields
in the message header. The type field.specifies which routine P2
must execute to process the message. A type of ‘=1’ is reserved
for acknowledgement messages to the original sender of the mes-

sage. The status of the processed message is returned in the

-12 -

status field of the message header, a non-zero value indicating
an error. The status of -1 is reserved for use by the system to
indicate that process P2 does not exist or was terminated abnor-

mally while processing the message. The sequence number field is

used solely for debugging purposes. The identifier field may be
planted by Pl to be used to identify and verify acknowledgement

messages. This word is not modified by the system.

Process P2 achieves synchronization by waiting for a mes-
sage. In general a process may receive any message type from any
process by means of the dequeuem primitive. However P2 may re-
quest a message type by means of dgtype in order to process mes-
sages in a certain sequence for internal process management. In
each case the kernel primitive will return a success/fail condi-
tion. In the case of a fail return, P2 has the option of road-
blocking to wait for a message event or of doing further process-

ing and looking for an .input message at a later time.

5.3 EMT Traps
EMT traps provide a means of passing information between

supervisor-user processes and the basic kernel, as well as
between kernel processes and the basic kernel. They are used
primarily to provide a level of protection between processes, and
between processes and the kernel. In this case the EMT traps are
synchronous, that is they are handled by the currently running

process.

A few EMT traps in the MERT system are reserved for inter-

N

~—

-

0

0

- 13 -

process communication. In particular, the kernel character dev-
ice driver processes have an EMT entry point to catch EMT’s from

other . processes. These processes handle the read, write, getty

and setty EMT's (getty and setty get and set the modes of the
user‘'s teletype channel respectively). 1In the case of the read
and write EMT’S, the traps must specify process number, channel,
1/0 segment, offset into the segment and the byte count. Normal-
ly the data transfer is directly to/from the user ‘s address
space. This provides an efficient means of transferring large

amounts of data between co-operating processes.

5.4 Shéred Memori

There are cases where transfers of large quantities of data
between processes are not necessary. In this case a shared piece
of memory or a shared segment is suitable for achieving inter-
process communication. In the implementation of the kernel the
common pool of message buffers provides a shared piece of memory
through which ptocesses may communicate. The sharing of library

segments in the kernel has been discussed previously.

Supervisor-user processes may share memory by means of nahed
as well as unnamed segments. Segments may be shared on a super-
visor as well as a user level. In both cases pure code is shared
as named segments. In the case of a time-sharing supervisor
(described in a later section), a segment is shared for I/0
buffers and file descriptors. A shared segment is also used to
implement the concept of a pipe (7)., which is an inter-process

channel used to communicate streams of data between related

- 14 -

processes. At the user level related processes may share a seg-
ment for the efficient communication of a large gquantity of data.
For related processes, a parent process may set up a shareable
segment in his address space and restrict the access permissions
of all child processes to provide a means of protecting shared
data. Facilities are also provided for sharing segments between

unrelated supervisors and between kernel and supervisor

processes.

5.5 Files

The file system has a hierarchical structure equivalent to
the UNIX file system (7) and as such has certain protection keys
(see &6). Most files have general read/write permissions and the
contents are shareable between processes. The file system struc-
ture is controlled completely by the file manager process. All

processes may communicate with the file manager via message prim-

itives.

In some cases the access permissions of the file may itself
serve as a means of communication. If a file 1is created with
read/write permissions for the owner only, another process may

not access this file. This is a means of making that file name

unavailable to a second process.

5.6 Process Ports

Knowing the identity of a process gives another process the
ability to communicate with it. The 1identity of certain key

processes must be known to all other processes at system startup

¢
Il
i

-)

()

O

- 15 -

time to enable communication to occur. These globally known
processes include the scheduler; the memory manager, the process
manager, the file manager and the swap device driver process.
Thése comprise a sufficient set of known processes to start up

new processes which may then communicate with the original set.

ﬁevice driver processes are created dynamically in the sys-
tem. They are in fact created, loaded and locked in memory upon
opening a "device" file (see &6). The identity of the device
driver process is returned by the process manager to the file
manager which in turn may return the identity to the process
which requested the opening of " the "device" file. These

processes are referred to as "external" processes by Brinch Han-

sen (4).

The .above process communication primitives do not satisfy
the requirements of communication between unrelated processes.
For this reason the concept of process ports has been introduced
in the MERT system. A process port is a globally known "device"
to which a process may attach itself in order to communicate with
"unknown" processes. A process may connect itself to a port,
disconnect itself from a port or obtain the identity of a processw
connected to a specific port. Once a process identifies itself
globally by connecting itse;f to a port, other processes may com-
municate with it by sending messages to it through the port. The
port thus serves as a two-way communication channel. It is a
means of communication for processes which are not descendents of

each other.

- 16 -

One process port in the system is used to communicate with
an error logger process. At system startup time the error logger
process connects itself to a process port. All device driver
processes upon detecting a device error send an error diagnostic
message through the error logger process port. This error logger
records the pertinent error information in a file along with the

date and time of occurrence of the error.

6. File System

The multi-environment as well as the real-time aspects of
the MERT system require that the file system structure be capable
of handling many different types of requests. Time-sharing ap-
plications require that files be both dynamically allocatable and
dynamically growable. Real-time applications require that files
be large and possibly contiguous; dynamic allocation and growth

are usually not required for real-time applications.

For data base management systems, files must be very large
and it is often advantageous that files be stored in one contigu-
ous area of secondary storage. Such large files are efficiently
described by a file-map entry which consists of starting block
number and number of consecutive blocks (a two-word extent). A
further benefit of this allocation scheme is that file accesses
require only one access to secondary storage. Another commonly
used scheme, using indexed pointers to blocks of a file in a
file-map entry, may require more than one access to secondary
storage to read or write a block of a file. However, this latter

organization is usually quite suitable for time-sharing

()

()

-17 -

applications. The disadvantage of using two-word extents in the
file-map entry to describe a dynamic time-sharing file is that
this may lead to secondary storage fragmentation. In practice

the efficient management of the in-core free extents reduces

storage fragmentation significantly.

The MERT file system is similar to the UNIX file system (7)
in many respects. Three kinds of files are discernible to the
user: ordinary disk files, directories and special files. The
directory structure is identical to the UNIX file system directo-
ry s8tructure. Directories provide ghe mapping between the names
of files and the files themselves and induce a hierarchicél nam-
ing convention on the files. A directory entry contains only the
name of the file and a file identifier which 1is essentially a
pointer to the file-map entry for that file. A file may have

more than one link to it, thus enabling the sharing of files.

Special files in MERT are associated with each I/0 device.
The opening of a special file causes the file manager to send a
message to the process manager to create and load the appfopriate
device driver process and lock it in memory. Subsequent reads
and writes to the file are translated into read/write messages to

the corresponding I/0 driver process by the file manager process.

In the <case of ordinary files, the contents of a file are
whatever the user puts in it. The file system process imposes no

structure on the contents of the file.

The MERT file system distinguishes between contiguous Ffiles

- 18 -

and other ordinary files. Contiguous files are described by one
extent and the file blocks are not freed until the last 1link to
the file 1is removed. Ordinary files may grow dynamically using
up to 27 extents to describe their secondary storage allocation.
To minimize fragmentation of the file system a growing file is

allocated 40 blocks at a time. Unused blocks are freed when the

file is closed.

The list of féee blocks of secondary storage is kept® in
memory as a list of the 64 largest extents of contiquous free
blocks. Blocks for files are allocated and freed from this 1list
using an algorithm which minimizes file system fragmentation.
When freeing blocks, the blocks are merged into an existing entry
in the free list if possible, otherwise placed in an unused entry
in the free list, or failing this, replace an entry in the free

list which contains a smaller number of free blocks.

The entries which are being freed or allocated are also
added to an update list in memory. These update entries are used
to update a bitmap which resides on secondary storage. If the
in-core free list should become exhausted, the bitmap is consult-
ed to re-create the 64 largest entries of.contiguous free blocks.
The nature of the file system and the techniques used to reduce
file system fragmentation ensure that this is a very rare oc-

currence.

Very active file systems consisting of many small time-

sharing files may be compacted periodically by a utility program

()

()

- 19 -

to minimize file system fragmentation still further. File system
storage fragmentation actually only becomes a problem when a file
is unable to grow dynamically having used up all 27 extents in

its file map entry. Normal time-sharing files do not approach

this condition.

Communication with the file system process is achieved en-
tirely by means of messages. The file manager can handle 25 dif-
ferent types of messages. The file manager is a kernel process
using both I and D space. It is structured as a task manager
which controls a number of parallel co-operating tasks operating
on a common data base and are not individually preemptible. Each
task acts on behalf of one incoming message and has a private
data area as well as a common data area. The parallel nature of
the file manager ensures eflicient nandling of the file system
messages. The mode of communication, message buffers, also
guarantees that other processes need not know the details of the
structure of the file system. Changes in &he file system struc-

ture are easily implemented without affecting other process

structures.

7. A Time-Sharing Supervisor

One of the first supervisor-user processes developed for the
MERT system was a time-sharing supervisor logically equivalent to
the UNIX time-sharing system (7). This system has a power ful set
of tools for software development, including an editor, an assem-
bler, a link editor and a compiler for a systems language, C (8).

Many user application programs have also been written for the

- 20 -

UNIX system. Therefore the logical equivalent of a UNIX time-
sharing supervisor process with user programs running in user

address space was implemented as an environment in the MERT sys-

tem.

The UNIX supervisor process was implemented using messages
to communicate with the file system manager. This makes the UNIX
supervisor completely independent of the file system structure.
Changes and additions can then be made to the file system process
as well as the file system structure on secondary storage without

affecting the operation of the UNIX supervisor.

The structure of the system reguires that there be an in-
dependent UNIX process for each user who "logs in". 1In fact a
UNIX process is started up when a “carrier-on" transition Iis

detected on a line which is capable of starting up a user.

For efficiency purposes the code of the UNIX supervisor is
shared among all processes running in the UNIX environment. Each
supervisor has a private data segment for maintaining the process
stack and hence the state of the process. For purposes of com-
munication one large data segment is shared among all UNIX
processes. This data segment contains a set of shared buffers
used for system side~buffering and a set of shared file descrip-

tors which define the files that are currently open.

The sharing of this common data segment does introduce the
problem of «critical regions, i.e. regions during which common

resources are allocated and freed. The real-time nature of the

()

()

()

()

- 2] -

system means that a process could be preempted even while running
in a critical region. To ensure that this does not occur, it is
necessary to iphibit preemption during a critical region and then
permit preemption again upon exiting from the critical region.
This also guarantees . that the delivery of an event at a higher
hardware priority will not cause a critical region to be re-
entered. Note that a simple semaphore cannot prevent such re-

entry unless events are inhibited during the setting of the sema-

phore.

The UNIX supervisor mékes use of all of the cammunicatioﬁ
primitives discussed previously. Messages are used to communi-
cate with the file system process. Events and shared memory are
used to communicate with other UNIX processes. Communication
with chataéter device driver processes is by means of EMT traps.
Files are used to share information among processes. Process
ports are used in the implementation of an error logger process

to collect error messages from the various I/O0 device driver

processes, as previously described.

The structure of the basic kernel and of the file system
make it possible to add new features to the UNIX supervisor. An
application program has been written to create an image of a pro-
cess with all of the pertinent information about the process con-
tained in the header block of the file which contains the process
image. A UNIX process may send a message to the process manager
to create and load the process described in a process image file.

This is used to start up other supervisor-user processes

’

- 22 -

including real-time processes.

The structure of the file system, particularly the fact that
large pieces of files are contiguous, facilitates the implementa-
tion of physical and asynchronous I/0 transfers directly between
the user’s address space and his files. The limit on the size of

the data transfer is determined by the size of the wuser’s data

segment.

The ability to send and receive messages is also available
to the user. ' For communication with unrelated processes, a pro-
cess has the facility to connect to a port and send a message

through it.

A process consists of a related collection of logical seg-
ments. The segments which belong to a process are usually deter-
mined by the process manager upon creation of the process ang
subsequently by the supervisor. However under MERT a user may
also add logical segments to his user address space. The user
may specify the access permissions on a per segment basis as well
as determine the access permissions for any descendent processes.
Access to information in a shared segment is controlled by means

of synchronization primitives between the co-operating processes.

The entire code for the UNIX supervisor process consists of
6088 words. All memory management and process scheduling func-

tions are performed by the basic kernel.

()

()

()

)

- 23 -

8. Real Time Aspects

Several features of the MERT architecture make it a sound
base on which to build real-time operating systems. The kernel
provides the primitives needed to construct a system of cooperat-
ing, independent processes, each of which is designed to handle
one aspect of the larger real-time problem. The processes can be
arranged in levels of decreasing privilege depending on the
response requirements. Kernel processes are capable of respond-~
ing to interrup;s within 1860 microseconds, non-swap supervisor
processes can respond within a few milliseconds, and swap
processeé can respond in hundreds of milliseconds. Shared seg-
ments can be used to pass data between the levels and to insure
that the most up-to-date data is always available. The preemp-
tive priority scheduler and the control over which processes are
swappable allow the system designer to specify the order in which
tasks are processed. Since the file manager is an independent
process driven by messages, all procésses can communicate direct-
ly with 1it, providing a limited amount of device independence.
The ability to store a file on a contiguous area of secondary
storage is aimed at minimizing access time. Finally, the availa-
bility of a sophisticated time-sharing system in the same machine
as the real-time operating system provides powerful tools which
can be exploited in designing the man-machine interface to the

real-time processes.

9. Process Debugging

One of the most powerful features of the system is the

- 24 -

ability to carry on system devélopment while users are logged in.
New I/0 drivers have been debugged and experiments with new ver-
sions of the time sharing supervisor have been performed without
adversely affecting the user community.

Three aspects of the system make this possible:

l) Processes can be loaded dynamically.

2) Snap shot dumps of the process can be made using the time
sharing supervisor.

3) Processes are gracefully removed from the system and a
core dump produced on the occurrence of a "break point
trap".

As an example, we recently interfaced a PDP-11/28 to our
system using an inter-processor DMA link. During the debugging
of the software, the two machines would often get out of phase
leading to a break-down in the communication channel. When this
occurred, a dump of the process handling the PDP-11/45 end of the
link was produced, a core image of the PDP-11/20 was transmitted
to the PDP-11/45, and the two images were analyzed using a sym-
bolic debugger running under the time sharing supervisor. When
the problem was fixed a new version of the kernel mode link pro-
cess was created, loaded, and tested. Turn around time in this
mode of operation is measured in seconds or minutes.

While it is possible for an undebugged kernel process to
corrupt the system, our experience has been that this does nat
happen. Using higher level languages (8), and making the ap-
propriate checks in the kernel for the most common types of er-

rors has proven to be an effective way to prevent crashes.

<)

- 25 =

19. Summarz

We summarize here some of the conclusions we have come to
concerning the structure of the system, its overall efficiency,
the design trade-offs made, the disadvantages of the system
design as well as the advantages and some operational statistics.
In general, for the sake of a more efficient system, protection
was sacrificed where it was believed not to be crucial to an
effective system. The very nature of the structure of the C
language which was used to write the code for all processes, ker-
nel and supervisor-user, forced structure in the processes thus

providing some means of protection.

The hardware of the PDP-11/45 computer requires that a dis-
tinction be made between kernel processes and supervisor-user
processes. Kernel processes have direct access to the kernel-
mode address space and may use all privileged instructions.
Moreover, a kernel process has access to some of the sensitive
system data used by the kernel procedures. The stack used by a
kernel process is the same as that used by the basic kernel. The
address sharing expedites the transmission of messages since the

data in the message need not be copied.

To provide complete security in the kernel would require
that each process use its own stack area and that access to all
base registers other than those reéuited by the process be turned
off. The time to set up a process would become prohibitive.
Since kernel processes are most often dispatched to by means of

an interrupt, the interrupt overhead would become intolerable,

making it more difficult to guarantee real-time response.

The message buffers are also corruptible by a kernel pro-
cess. The only way to protect against corruption completely
would be to make a kernel call to copy the message from the

process’s virtual address space to the kernel buffer pool. For

efficiency reasons this was not done.

In actual practice the corruption of the kernel by kernel
processes does not occur in our system even when debugging new
kernel processes. Using the C language facilitated the writing
of correct program procedures. We observed that even in the
debugging stage fatal system errors were never caused by the
modification of data outside of a process’s virtual address
range. Most errors were timing dependent, errors which would not

have been detected even with better protection mechanisms.

Supervisor-user processes do not have direct access to sen-
«ents of other processes, kernel or supervisor-user. Therefore
it is possible to restrict the effect of these processes on otuer
processes. Of course one pays a price for this protection in the
sense that all supervisor-user base registers must have the ap-
propriate access permissions set when the process is scheduled.
Message traffic overhead is also.higher now because a sendmsg
kernel primitive must copy the message from the process’s virtual
address space to the system message buffer. Similarly a getmsg
kernel primitive must copy the message from the kernel message

.buffer to the process’s virtual address space. The following

-

S

)

<)

)

- 27 -

times are indicative of the system overhead involved in sending

and receiving messages:

kernel supervisor
send 150 400 usec.

receive 159 490 usec.

The total system design gives us a unique opportunity to
compare system response time running under a dedicated UNIX
time-sharing system with the response time running in a UNIX
time-sharing environment supported by the MERT system. Applica-
tion programs which take advantage of the UNIX file system struc-
ture give better response in a dedicated UNIX time-sharing sys-
tem, whereas those which take advantage of the MERT file system
structure give a better response under MERT. Compute-bound tasks
of course respond in the same time under both systems. It is
only where there is substantial system interaction that the
structure of the MERT system introduces extra system overhead
which is not present in a dedicated UNIX system. Heavily used
programs typically take 5 to 18 percent longer to run under MERT
compared to dedicated UNIX at the current stage of implementa-
tion. We are studying the bottlenecks in MERT to reduce this
overhead further. We believe that this overhead is a small price
to pay to achieve a well-structured operating system which has
capabilities for further expansion in supporting other processes
which provide different environments. In retrospect we believe

the structure of the system does provide a good base for doing

- 28 -
further operating system research.

Acknowledgments

Some of the.concepts incorporated in the basic kernel were
developed in a previous design and implementation of an operating
system Kkernel by Mr. C. S. Roberts and one of the authors (H.
Lycklama). The authors are pleased to acknowledge Mr. C. S.

Roberts for many fruitful discussions during the design stage of

the current operating system.

MH-1352-HL-JER

H. Lycklama

Att.
Reference
Figures 1-4

-)

=)

-)

-)

-)

(1)

(2)

(3)

(4)

(3)

. (6)

(7)

(8)

- 29 -

References

PDP-11/45 Processor Handbook, Digital Equipment Corporation,
Maynard MA, 1971.

Lycklama, H. and Bayer, D. L., A Structured Operating System
for the PDP-11/45. TM-75-1352-4.

Dijkstra, E.W., The Structure of the ‘THE® Multi-Programming
System. Comm. ACM 11, (May 1968), p34l.

Brinch Hansen, P., The Nucleus of a Multi-Programming System.
Comm. ACM 13, (April 1978), p238.

Sorenson, P. G., Interprocess Communication in Real-Time Systems,
Proc. Fourth ACM SOSP, Oct. 1973, pp 1-7.

Sevcik, K.C., Atwood, J.W., Grushcow, M.S., Holt, R.C., Horning,
J.J. and Tsichritzis, D. Project SUE as a Learning Experience.

Thompson, K. and Ritchie, D.M., The UNIX Time-Sharing System.
Comm. ACM 17, (July 1974), p365.

Ritchie, D.M. C Reference Manual. Internal memorandum, Bell
Telephone Laboratories (1973).

21MINyS wayskS 1 aJnbiy

Jobeuel Aowsw ‘J8jnpayds ‘saaniwiag ‘sidnaasyuy ‘sdes) JINYIN I

A ™ N P N 7N 7o) PN A
sobesssly pue sdesy W3
2 ¥ ¥
d3AlYa YIATYA YW 7
o/ oA 114
'S d v W \
u I . SS1 ¢ ‘dNnS 1 °dNS JOW ¢
SSL |I”771 ssi M3IN 1Y i J04d
s-/ y H
u 1 N
4Isn === ¥3asn 43sn
| TIATT
Cr Cr (Cr (-~ «

header

:_ - _meissa_ég_lguﬁers—
1?' - _— stack. . _

4

— ——

o a— CEr @En ey ame e o —

kernel process
code and data

- system library

device registers

L

Figufe 2 The virtual address space of a typical

kernel process

60000

140000

140000

Wy

L)

) ()

BRO

BRI
© - BR2
BR3"
- BRA

BRS

| BRS

BR7

. SUPERVISOR

CODE)Z\

Y
XXXK

[CoMMON
EXpATAZ]

AXYPCR %

b(.-r[/.

D

XSTACK X

5
FSTACK X

Figur_e 3 UNIX PROCESS VIRTUAL

ADDRESS SPACE

. LINK

FROM PROCESS NUMBER

. TO- PROCESS NUMBER

. l .I .l
" TYPE } ,' | 1SIZE

IDENTIFIER

- | SEQUENCE NUMBER STATUS

- MESSAGE

DATA

Figure 4 MESSAGE FORMAT

()

/
Sy e

