Make — A Program for Maintaining Computer Programs

S. 1. Feldman

Bell Laboratories
Murray Hill, New Jersey 07974

ABSTRACT

In a programming project, it is easy to lose track of which files need to be
reprocessed or recompiled after a change is made in some part of the source.
Make provides a simple mechanism for maintaining up-to-date versions of pro-
grams that result from many operations on a number of files. It is possible to
tell Make the sequence of commands that create certain files, and the list of
files that require other files to be current before the operations can be done.
Whenever a change is made in any part of the program, the Make command
will create the proper files simply, correctly, and with a minimum amount of
effort.

The basic operation of Make is to find the name of a needed target in the
description, ensure that all of the files on which it depends exist and are up to
date, and then create the target. if it has not been modified since its generators
were. The description file really defines the graph of dependencies; Make does
a depth-first search of this graph to determine what work is really necessary.

Make also provides a simple macro substitution facility and the ability to
encapsulate commands in a single file for convenient administration.

August 15, 1978

Make — A Program for Maintaining Computer Programs

S. 1. Feldman

Bell Laboratories
Murray Hill, New Jersey 07974

Introduction

It is common practice to divide large programs into smaller, more manageable pieces.
The pieces may require quite different treatments: some may need to be run through a macro
processor, some may need to be processed by a sophisticated program generator (e.g., Yacc[1]
or Lex([2]). The outputs of these generators may then have to be compiled with special options
and with certain definitions and declarations. The code resulting from these transformations
may then need to be loaded together with certain libraries under the control of special options.
Related maintenance activities involve running complicated test scripts and installing validated
modules. Unfortunately, it is very easy for a programmer to forget which files depend on
which others, which files have been modified recently, and the exact sequence of operations
needed to make or exercise a new version of the program. After a long editing session, one
may easily lose track of which files have been changed and which object modules are still valid,
since a change to a declaration can obsolete a dozen other files. Forgetting to compile a routine
that has been changed or that uses changed declarations will result in a program that will not
work, and a bug that can be very hard to track down. On the other hand, recompiling every-
thing in sight just to be safe is very wasteful.

The program described in this report mechanizes many of the activities of program
development and maintenance. If the information on inter-file dependences and command
sequences is stored in a file, the simple command

make

is frequently sufficient to update the interesting files, regardless of the number that have been
edited since the last ‘“‘make’’. In most cases, the description file is easy to write and changes
infrequently. It is usually easier to type the make command than to issue even one of the
needed operations, so the typical cycle of program development operations becomes

think — edit — make — test . ..

Make is most useful for medium-sized programming projects; it does not solve the prob-
lems of maintaining multiple source versions or of describing huge programs. Make was
designed for use on Unix, but a version runs on GCOS.

Basic Features

The basic operation of make is to update a target file by ensuring that all of the files on
which it depends exist and are up to date, then creating the target if it has not been modified
since its dependents were. Make does a depth-first search of the graph of dependences. The
operation of the command depends on the ability to find the date and time that a file was last
modified.

To illustrate, let us consider a simple example: A program named prog is made by compil-
ing and loading three C-language files x.c, y.c, and z.c with the /S library. By convention, the
output of the C compilations will be found in files named x.0, y.0, and z.0. Assume that the
files x.c and y.c share some declarations in a file named defs, but that z.c does not. That is, x.c

‘o

Y

and y.c have the line

#include "defs”

The following text describes the.relationships and operations:

prog: X.0 y.0 z.0
¢cc X.0 y.0 zo —IS —o prog

X.0 y.0: defs }
If this information were stored in a file named makefile, the command

make

would perform the operations needed to recreate prog after any changes had been made to any
of the four source files x.c, y.c, z.c, or defs.

Make operates using three sources of information: a user-supplied description file (as
above), file names and ‘‘last-modified” times from the file system, and built-in rules to bridge
some of the gaps. In our example, the first line says that prog depends on three ‘‘.o™ files.
Once these object files are current, the second line describes how to load them to create prog.
The third line says that x.o and y.o depend on the file defs. From the file system, make discov-
ers that there are three ‘‘.c"" files corresponding to the needed ‘‘.0” files, and uses built-in
information on how to generate an object from a source file (i.e., issue a ‘‘cc —c'’ command).

The following long-winded description file is equivalent to the one above, but takes no
advantage of make’s innate knowledge:

prog : X.0 y.0 z.0
cc X.0 y.0 z0 —IS —o prog

X.0: x.c defs

cc —-C X.C
y.0: y.c defs

cc —c y.c
2.0: z.c

¢ —cC z.c

If none of the source or object files had changed since the last time prog was made, all of
the files would be current, and the command

make

would just announce this fact and stop. If, however, the defs file had been edited, x.c and y.c
(but not z.c) would be recompiled, and then prog would be created from the new **.0" files. If
only the file y.c had changed, only it would be recompiled, but it would still be necessary to
reload prog.

If no target name is given on the make command line, the first target mentioned in the
description is created; otherwise the specified targets are made. The command

make X.0

would recompile x.o if x.c or defs had changed.

If the file exists after the commands are executed, its time of last modification is used in
further decisions; otherwise the current time is used. It is often quite useful to include rules
with mnemonic names and commands that do not actually produce a file with that name.
These entries can take advantage of make's ability to generate files and substitute macros.
Thus. an entry ‘‘save”” might be included to copy a certain set of files, or an entry ‘‘cleanup”

-3.

mighl‘be used to throw away unneeded intermediate files. In other cases one may maintain a
zero-length file purely to keep track of the time at which certain actions were performed. This
technique is useful for maintaining remote archives and listings.

Make has a simple macro mechanism for substituting in dependency lines and command
strings. Macros are defined by command arguments or description file lines with embedded
equal signs. A macro is invoked by preceding the name by a dollar sign; macro names longer
than one character must be parenthesized. The name of the macro is either the single character
after the dollar sign or a name inside parentheses. The following are valid macro invocations:

$(CFLAGS)

The last two invocations are identical. $3 is a dollar sign. All of these macros are assigned
values during input, as shown below. Four special macros change values during the execution
of the command: $+, $@, 37, and §<. They will be discussed later. The following fragment
shows the use:

OBJECTS = x.0y.0 z.0
LIBES = —IS
prog: S(OBJECTS)
cc S(OBJECTS) $(LIBES) —o prog

The command

make

loads the three object files with the /S library. The command

make °"LIBES= —I} —IS"

loads them with both the Lex (““—II"") and the Standard (**—IS’*) libraries, since macro
definitions on the command line override definitions in the description. (It is necessary to
quote arguments with embedded blanks in UNIXt commands.)

The following sections detail the form of description files and the command line, and dis-
cuss options and built-in rules in more detail.

Description Files and Substitutions

A description file contains three types of information: macro definitions, dependency
information, and executable commands. There i§ also a comment convention: all characters
after a sharp (#) are ignored, as is the sharp itself. Blank lines and lines beginning with a sharp
are totally ignored. If a non-comment line is too long, it can be continued using a backslash. If
the last character of a line is a backslash, the backslash, newline, and following blanks and tabs
are replaced by a single blank.

A macro definition is a line containing an equal sign not preceded by a colon or a tab.
The name (string of letters and digits) to the left of the equal sign (trailing blanks and tabs are
stripped) is assigned the string of characters following the equal sign (leading blanks and tabs
are stripped.) The following are valid macro definitions:

tUNIX is a Trademark of Bell Laboratories.

7

2 = xyz
abc = —=|l —ly —1IS
LIBES =

The last definition assigns LIBES the null string. A macro that is never explicitly defined has
the null string as value. Macro definitions may also appear on the make command line (see
below).

Other lines give information about target files. The general form of an entry is:

target] [target2 . . .] :[:] [dependent! . ..] [; commands] [# .. .]
[(1ab) commands] [# . .]

Items inside brackets may be omitted. Targets and dependents are strings of letters, digits,
periods, and slashes. (Shell metacharacters ‘*+’* and **?"* are expanded.) A command is any
string of characters not including a sharp (except in quotes) or newline. Commands may
appear either after a semicolon on a dependency line or on lines beginning with a tab immedi-
ately following a dependency line.

A dependency line may have either a single or a double colon. A target name may appear
on more than one dependency line, but all of those lines must be of the same (single or double
colon) type.

1. For the usual single-colon case, at most one of these dependency lines may have a com-
mand sequence associated with it. If the target is out of date with any of the dependents
on any of the lines, and a command sequence is specified (even a null one following a
semicolon or tab), it is executed; otherwise a default creation rule may be invoked.

2. In the double-colon case, a command sequence may be associated with each dependency
line: if the target is out of date with any of the files on a particular line, the associated
commands are executed. A built-in rule may also be executed. This detailed form is of
particular value in updating archive-type files.

If a target must be created, the sequence of commands is executed. Normally, each com-
mand line is printed and then passed to a separate invocation of the Shell after substituting for
macros. (The printing is suppressed in silent mode or if the command line begins with an @
sign). Make normally stops if any command signals an error by returning a non-zero error
code. (Errors are ignored if the **—i"" flags has been specified on the make command line, if
the fake target name *.IGNORE" appears in the description file, or if the command string in
the description file begins with a hyphen. Some UNIX commands return meaningless status).
Because each command line is passed to a separate invocation of the Shell, care must be taken
with certain commands (e.g., ¢d and Shell control commands) that have meaning only within a
single Shell process; the results are forgotten before the next line is executed.

Before issuing any command. certain macros are set. S@ is set 0 the name of the file to
be "*made’”. S? is set to the string of names that were found to be younger than the target. If
the command was generated by an implicit rule (see below), $< is the name of the related file
that caused the action, and $=* is the prefix shared by the current and the dependent file names.

If a file must be made but there are no explicit commands or relevant built-in rules, the
commands associated with the name ‘*.DEFAULT" are used. If there is no such name, make
prints a message and stops.

Command Usage

The make command takes four kinds of arguments: macro definitions, flags, description
file names, and target file names.

make [flags] [macro definitions] [targets]

.5.

The following summary of the operation of the command explains how these arguments are
interpreted.

First, all macro definition arguments (arguments with embedded equal signs) are analyzed

and the assignments made. Command-line macros override corresponding definitions found in
the description files.

-r
-n

Next, the flag arguments are examined. The permissible flags are

Ignore error codes returned by invoked commands. This mode is entered if the fake tar-
get name . JGNORE™ appears in the description file.

Silent mode. Do not print command lines before executing. This mode is also entered if
the fake target name ‘“.SILENT"" appears in the description file.

Do not use the built-in rules.

No execute mode. Print commands, but do not execute them. Even lines beginning with
an ‘@ sign are printed.

Touch the target files (causing them 1o be up 1o date) rather than issue the usual com-
mands.

Question. The make command returns a zero or non-zero status code depending on
whether the target file is or is not up to date. .

Print out the complete set of macro definitions and target descriptions
Debug mode. Print out detailed information on files and times examined.

Description file name. The next argument is assumed to be the name of a description
file. A file name of ‘="' denotes the standard input. If there are no “*—f" arguments,
the file named makefile or Makefile in the current directory is read. The contents of the
description files override the built-in rules if they are present).

Finally, the remaining arguments are assumed to be the names of targets to be made; they

are done in left to right order. If there are no such arguments, the first name in the description
files that does not begin with a period is ‘*made”".

Implicit Rules

The make program uses a table of interesting suffixes and a set of transformation rules to

supply default dependency information and implied commands. (The Appendix describes these
tables and means of overriding them.) The default suffix list is:

0 Object file

¢ C source file

e Efl source file

T Ratfor source file

J Fortran source file

s Assembler source file

y Yacc-C source grammar

yr Yacc-Ratfor source grammar
ve Yacc-Efl source grammar
A Lex source grammar

The following diagram summarizes the default transformation paths. If there are two paths
connecting a pair of suffixes, the longer one is used only if the intermediate file exists or is
named in the description.

L2}

)

0

Al

f.s .y yr yexl .d

p . Jyr o .ye

If the file x.0 were needed and there were an x.c in the description or directory, it would
be compiled. If there were also an x./, that grammar would be run through Lex before compil-
ing the result. However, if there were no x.c but there were an x./, make would discard the
intermediate C-language file and use the direct link in the graph above.

1t is possible to change the names of some of the compilers used in the default, or the flag

arguments with which they are invoked by knowing the macro names used. The compiler
names are the macros AS, CC, RC, EC, YACC, YACCR, YACCE, and LEX. The command

make CC=newcc

will cause the “‘newcc™ command to be used instead of the usual C compiler. The macros
CFLAGS, RFLAGS, EFLAGS, YFLAGS, and LFLAGS may be set to cause these commands
to be issued with optional flags. Thus,

make "CFLAGS = -0"

causes the optimizing C compiler to be used.

Example

As an example of the use of make, we will present the description file used to maintain
the make command itself. The code Tor make is spread over a number of C source files and a
Yacc grammar. The description file contains:

-7-

Description file for the Make command

P = und =3 |opr =12 # send to GCOS to be printed
FILES = Makefile version.c defs main.c doname.c misc.c files.c dosys.cgram.y lex.c gcos.c
OBJECTS = version.o main.o doname.o misc.o files.o dosys.o gram.o

LIBES= —1I§
LINT = lint —p
CFLAGS = -0

make: 3(OBJECTS) h
cc $(CFLAGS) $(OBJECTS) $(LIBES) —o0 make
size make

$(OBJECTS): defs
gram.o: lex.c

cleanup:
-rm *.0 gram.c
-du

install: .
@size make /usr/bin/make
cp make /usr/bin/make ; rm make

print: $S(FILES) # print recently changed files
pr $? | 8P
touch print
test:
make —dp |grep —v TIME >1zap
/usr/bin/make —dp | grep —v TIME >2zap
.diff Yzap 2zap
rm lzap 2zap
lint : dosys.c doname.c files.c main.c misc.c version.c gram.c
$(LINT) dosys.c doname.c files.c main.c misc.c version.c gram.c
rm gram.c
arch: ‘
ar uv /sys/source/s2/make.a $(FILES)

Make usually prints out each command before issuing it. The following output results from
typing the simple command

make

in a directory containing only the source and description file:
¢c —c version.c
cC =—c¢ main.c

cc —c doname.c
cc =—c misc.c

cc —c files.c
. ¢c —c dosys.c
yacc gram.y

mv y.tab.c gram.c

cc —c gram.c

cc version.0 main.o doname.o misc.o files.o dosys.o gram.o —IS —o make
13188+3348+3044 = 19580b = 046174b

Although none of the source files or grammars were mentioned by name in the description file,
make found them using its suffix rules and issued the needed commands. The string of digits

3

)

-8-

results from the ‘‘size make” cqmmand; the printing of the command line itself was suppressed
by an @ sign. The @ sign on the size command in the description file suppressed the printing
of the command, so only the sizes are written.

The last few entries in the description file are useful maintenance sequences The *‘print”’
entry prints only the files that have been changed since the last ‘‘make print” command. A
zero-length file print is maintained to keep track of the time of the printing; the $? macro in the
command line then picks up only the names of the files changed since print was touched. The
printed output can be sent to a different printer or to a file by changing the definition of the P
macro:

make print "P = opr —sp"
or
make print "P= cat >zap"

Suggestions and Warnings

The most common difficulties arise from make's specific meaning of dependency. If file
x.c has a ““#include "defs™" line, then the object file x.o0 depends on defs; the source file x.c
does not. (If defs is changed, it is not necessary to do anythmg to the file x.c, while it is neces-
sary to recreate x.0.)

To discover what make would do, the ‘*—n’" option is very useful. The command

make —n

orders make to print out the commands it would issue without actuaily taking the time to exe-
cute them. If a change to a file is absolutely certain to be benign (e.g., adding a new definition
to an include file), the =1t (touch) option can save a lot of time: instead of issuing a large
number of superfluous recompilations, make updates the modification times on the affected file.
Thus, the command

make —ts

(*‘touch silently”) causes the relevant files to appear up to date. Obvious care is necessary,
since this mode of operation subverts the intention of make and destroys all memory of the
previous relationships.

The debugging flag (**—d’") causes make to print out a very detailed description of what it
is doing, including the file times. The output is verbose, and recommended only as a last
resort.

Acknow!edgments

I would like to thank S. C. Johnson for suggesting this approach to program maintenance
control. | would like to thank S. C. Johnson and H. Gajewska for being the prime guinea pigs
during development of make.

References

1. S. C. Johnson, ““Yacc — Yet Another Compiler-Compiler’, Bell Laboratories Computmg
Science Technical Report #32, July 1978.

2. M. E. Lesk, “*Lex — A Lexical Analyzer Generator’®, Computing Science Technical
Report #39, October 1975.

.9.

Appendix. Suffixes and Transformation Rules

The make program itself does not know what file name suffixes are interesting or how to
transform a file with one suffix into a file with another suffix. This information is stored in an
internal table that has the form of a description file. If the **~r"" flag is used, this table is not
used.

The list of suffixes is actually the dependency list for the name ‘.SUFFIXES™: make
looks for a file with any of the suffixes on the list. If such a file exists, and if there is a
transformation rule for that combination, make acts as described earlier. The transformation
rule names are the concatenation of the two suffixes. The name of the rule to transform a *.r"’
file to a “.0” file is thus *“.r.0”. If the rule is present and no explicit command sequence has
been given in the user’s description files, the command sequence for the rule ‘“.r.0” is used. If
a command is generated by using one of these suffixing rules, the macro $= is given the value
of the stem (everything but the suffix) of the name of the file to be made, and the macro $< is
the name of the dependent that caused the action.

The order of the suffix list is significant, since it is scanned from left to right, and the first
name that is formed that has both a file and a rule associated with it is used. If new names are
to be appended, the user can just add an entry for *.SUFFIXES™ in -his own description file;
the dependents will be added to the usual list. A *.SUFFIXES™ line without any dependents
deletes the current list. (It is necessary to clear the current list if the order of names is to be
changed).

The following is an excerpt from the defauit rules file:

SUFFIXES:.0.c.er.f.y.yrye.l.s
YACC=yacc
YACCR=yacc —r
YACCE=yacc —e
YFLAGS=
LEX=lex
LFLAGS=
CC=c¢c
AS=3as —
CFLAGS=
RC=ec
RFLAGS=
EC=ec
EFLAGS=
FFLAGS=
.c.0: ,
$(CC) $(CFLAGS) —c $<
.e.0.r.o.fo:
$(EC) $(RFLAGS) $(EFLAGS) $(FFLAGS) —¢ $<

5.0
$(AS) -0 8@ $<

y.o:
S$(YACC) $(YFLAGS) $<
$(CC) $(CFLAGS) —c y.tab.c
rm y.tab.c
mv y.tab.o $@

y.c:

S(YACC) $(YFLAGS) $<
mv y.tab.c $@

]

&

().

