NG
s o~

@ Bell Laboratories ~ Cover Sheet for Technical Memorandum

The information comained herein is for the use of employees of Bell Laboratories and is not for publication. (See GEIl 13.9-3)

g
{
Title- An Algorithm for Differential File Comparison Date- October 1, 1975
T™- 75-1271-11
Other Keywords- Longest Common Subsequences

‘ Author Location Exiension Charging Case- 39199

*J. W. Hunt Filing Case- 39199-11

_M. D. Mcliroy MH2C526 6050

ABSTRACT

The program diff reports differences between two files, expressed as a
minimal list of line changes to bring either file into agreement with the other.
Diff has been engineered 10 make efficient use of time and space on typical in-
puts that arise in vetting version-to-version changes in computer-maintained or
computer-generated documents. Time and space usage are observed to vary
aboul as the sum of the file lengths on real data, although they are known to
vary as the product of the file lengths in the wors! case.

The central algorithm of diff solves the ‘longest common subsequence
problem’ to find the lines that do not change between files. Practical efficiency
is gained by attending only to certain critical ‘candidale’ maiches between the
files, the breaking of which would shorten the longest subsequence common to
some pair of initial segments of the two files. Various techniques of hashing,
presorting inlo equivalence classes, merging by binary search, and dynamic
storage allocation are used 10 obtain good performance.

Diff is available under the UNIX operating system for the PDP11 and

under 0S/360. Under UNIX, realistic inputs run in practically linear time and

("A\ space up (o the limits of addressable storage (64K bytes of program and data).

RN The largest manageable problems involve two 3500-line files and take on the
order of 1/2 minute of cpu time.

* Depariment of Electrical Engineering, Stanford University

.
| 1
Pages Text 5 Other 4 Towal 9 - To 75-12
CH
No. Figures 2 No. Tables 0 No. Refs. 11 WALKERyM> E A 2/76
H2C548 61/2
" GCOTGAC

E-1932-U (6-73) SEE REVERSE SIDE FOR DISTRIBUTION LiIST SUBJECT - -MATGH

BELL TELEPHONE LABORATORIES, INRC.

COMPLETE MEMORANDUM TO
CORRESPONDENCE FILES

OFFICIAL FILE COPY
PLUS ONE COPY FOR

COMPLETE MEMORANDUM TO

THOMPSON, K
<THOMSON,M-L

TUTELMAN, DAVID M
<WALFORD,ROBERT B

EACH ADDITIONAL FILING WALKER,MS E A

CASE REFERENCED

DATE FILE COPY
(FORM E-1328)

10 REFERENCE COPIES

<AHO,A V
<BECKER,R A
BIREN,MRS IRMA B
BLY,JOSEPH A
BOYCE,W M
BROWN,W STANLEY
<CHEN, STEPHEN
<CHERRY,MS L L
CLAYTON,D P
CRUME,LARRY L
DICKMAN,B N
FLEISCHER, HERBERT I
FOUGHT,B T
<FRASER,A G
FREEMAN,K GLENN
GAREY,MICHAEL R
GEYLING,F T
<GOLDSTEIN,A JAY
GRAHAM,R L
<HAMILTON, PATRICIA
HAMMING,R W
+HANNAY,N B
<JENSEN, PAUL D
<JOHNSON,STEPHEN C
<KEESE,W M
CKERNIGHAN, BRIAN W
<LUDERER,GOTTFRIED W R
<MARANZANO, JOSEPH F
<MARKY,MISS G A
<MC GILL,ROBERT
MC ILROY,M DOUGLAS
+MCDONALD, H S
MILLER,ALAN H
MILLER,G L
MORGAN, DENNIS J
MORGAN,S P
MORRIS, ROBERT
OSSANNA,J F JR
PERITSKY,MARTIN M
PETERSON, RALPH W
PINSON,ELLIOT N
+PRIM,ROBERT C
<RALEIGH,THOMAS M
RODRIGUEZ,ERNESTO J
<SCHLEGEL,C T
<SLOANE,N J A
SPANG, THOMAS C
SPIRES,R I
STROHBECKER, CARY A
TERRY,M E

+ NAMED BY AUTHOR

> CITED AS REFERENCE

WARNER,JACK L
WATSON,D S .
WEXELBLAT, RICHARD L
<YAMIN,MRS E E

60 NAMES

COVER SHEET ONLY TO

CORRESPONDENCE FILES

4 QOPIES PLUS ONE
COPY FOR EACH FILING
CASE

ABRAHAM,STUART A
AHRENS,RAINER B
ALCALAY,DAVID
ARNDT, DENNIS L
ARNOLD, GEORGE W
ARNOLD,S L
ARNOLD, THOMAS F
BADURA,DENNIS C

<BAKER, BRENDA S
BASEIL,RICEARD J
BAUER,H A
BAUGH,C R
BERNSTEIN, LAWRENCE
BEYER, JEAN=DAVID
BILOWOS,RICHARD M
BIRCHALL,R H
BLINN,JAMES C
BLUE,J L
BODEN,F J
BOLSKY,MORRIS I
BOURNE, STEPHEN R
BOWERS,J L
BOWYER,L RAY
BOYLE, GERALD C
BUCHSBAUM, S J
BULPER, ANDREW F
BYRNE, EDWARD R
CAMPBELL, STEPHEN T
CANADAY,RUDD H
CASPERS,MRS BARBARA E
CASTELLANO, MRS M A
CAVINESS,JOEN D
CHAMBERS,J M
CHAMBERS,MRS B C
CHRIST,C W JR
COBEN, ROBERT M

<COLE,LOUIS M
COLE,M O
COOPER,A E
COPP,DAVID B
CORNELL,R G

< REQUESTED BY READER

DISTRIBUTION
(REPER GEI 13.9-3)

COVER SHEET ONLY TO

COULTER,J REGINALD
CUTLER,C CHAFIN
D ANDREAR,MRS LOUISE A
DAVIS,R D
DESENDORF,JUDITH
DESMOND,J P
DEUTSCH,DAVID N
DEVLIN,MRS SUSAN J
DIMMICK,JAMES O
DOLOTTA,T A
DOMBROWSKI,F J
DRAKE,MRS L
ELLIOTT,G L
ELLIOTT,R J
ELY,T C
ERDLE,K W
ESSERMAN,ALAN R
FABISCH,MICHAEL P
FAULKNER,P. A
FEDER,J
FELDMAR, STUART I
<FELS,ALLEN M
FISCHER,H B
FOUNTOUKIDIS,A
POWLER,BRUCE R
POX,PHYLLIS
FOY,J C
FRANK,MISS A J
FROST,H BONNELL
FOLTON,ALAN W
GAJEWSKA,MS HANNA O
GARCIA.R F
GATES,G W
GAY,FRANCIS A
GIBB,KENNETH R
<GILLETTE,DEAN °
GIMPEL,JAMES F
GITHENS,JOBN A
GLASSER,ALAN L
GLUCK, F
<GNANADESIKAN,R
GOLABEK,MISS R
GORDON,BRIAN G
GOTTDENKER,ROBERT G
GROSS ,ARTHUR G
GUERRIERO,JOSEPH R
GUNDERMAN, R
HAFER,E H
HALL,ANDREW D JR
HALL,MILTON S JR
HALL,W G
<HARKNESS,C J
HARRISON,NEAL T
BARUTA.K
<HAWKINS,DONALD T
BAWKINS,RICHARD B
HEATH,SIDNEY F III
HEROLD,JOHN W
HESS, MILTON S
HINDERRS,L W
HONIG,W L
EOYT,WILLIAM F

COVER SHEET ONLY TO

HUDSON,E T
EUNNICUTT,CHARLES F
BUPKA, MRS FLORENCE
<HYMAN, B
IPPOLITI,O D
IRVINE M M
IVIE,EVAN L
JACKOWSKI,D J
JACOBS,B S
JAMES,DENNIS B
JESSOP,WARREN H
<JUDICE,CHARLES N
CKAISER,J F
KANE,J RICHARD
KANE,MRS ANNE B
KAPLAN,M M
KAYEL,R G
KELLY,L J
KENNEDY , ROBERT A
KERTZ,DENIS R
KILLMER,JOHN C JR
XLAPPROTH,F F
KNOWLTON , KENNETH
LEGENHAUSEN, S
LEERMAN, WILLIAM
LESK,MICHAEL E
LEVINSON, EDWARD
LICWINKO,J S
LIEBERT,THOMAS A
LINDERMAN,J
<LOGAN,MRS V G
LOMUTO, N
LUTZ ,KENNETE J
<LYCKLAMA, HEINZ
LYONS, STEVEN H
MADDEN,MRS D M
MAHELER,G R
MALCHESKI,W J JR
MALCOLM,J A
MARSH,MISS M
MASHEY,JOHN R
MATHEWS ,MAX V
MATTAVI, RONALD A
MATULIONIS,MRS P H
CABE,PETER S
CULLOUGH, RICHARD B
EOWEN, JAMES R
GONEGAL,MISS C A
MAEON,L E
MILLAN,W F
MULLEN,E C
TIGUE,G E
MENIST,DAVID B
MENNINGER,R E
METZ,ROBERT F
MILLER,S E
MILLS,MISS ARLINE D
MILNE,D C
MITCHELL,OLGA M M
MOLINELLI,JOEN J
MOLTA,J W
MORR,PHILLIP L

TEELELE

(NAMES WITHOUT PREFIX

WERE SELECTED USING THE AUTHOR’S SUBJECT OR ORGANIZATIONAL SPECIFICATION AS GIVEN BELOW)

TM=75-1271-11

COVER SHEET ONLY TO

MUIR,DAVID
MURATORI , RICHARD D
<MUSA,J D
NEHRLICH,W R
NELSON, N-P
<NINKE,WILLIAM H
NORTON,HERBERT O
NOWITZ,D A
O CONNELL,T F
O NREIL,F J
Q SHEA,W T
O SULLIVAN,JOEN A
<OBERER, ERIC
OLSEN, RONALD G
OPFERMAN,D C
<ORCHARD,R A
ORME, JAMES L
OWENS,MRS G L
PARRER,J C JR
PARKER,WILLIAM W
PATEL,C K N
PEARLMAN, B
PENNINO,T
PETERSON, T G
PFISTER, ROBERT G
PILLA,MICHAEL A
PIRZ,FRANK
PITTS,CHARLES J
POLLAK, HENRY O
POPPER,C
RAACK, GERALD A
<RAFSKY,L C
RALSTON,JAMES M
REED,S C
REHERT,ALLEN F
RIDDLEBERGER,C O
RIDDLE,GUY G
RITACCO,J E
RITCHIE,DENNIS M
ROBERTS,CHARLES S
ROCHKIND,M J
ROCHKIND,M M
ROOME,WILLIAM D
<ROSLER,LAWRENCE
ROSS,B H
ROVEGNO,MRS HELEN D
RYDER,J
SAND, DOCGLAS 8
SCHOEN,J M
SCERASS,JOHN J
SCHRYER,N L
<SCHWENKER,JOHN E
<SCRIBNER,NEAL M

R

SHANK,R A
SHIPLEY,EDWARD N
SHORTER,J W
SIDOR,DAVID J
SINOWITZ,NORMAN R

289 TOTAL

~

MERCURY SPECIEICATIONCe 0600000000 0000000000000000000000000000080400000000080000000000000000000000000000000000000artrs0cscscsssrsses

COMPLETE MEMO TO:
127-sup

COTCAC = COMPUTING THEORY, ALGROITHMS AND COMPLEXITY

COVER SHEET TO:

12-DIR 13-DIR

127

COPRFM = COMPUTER PROGRAMMING FILE MAINTENANCE

TO GET A COMPLETE COPY:

1. BE SURE YOUR CORRECT ADDRESS IS GIVEN ON THE OTHER SIDE.
2. FOLD THIS SHEET IN HALF WITH THIS SIDE OUT AND STAPLE.
3. CIRCLE THE ADDRESS AT RIGHT.

USE NO ENVELOPE. .

MARKY,G A
MB 20562

TM=T75-1271-11
TOTAL PAGES 9

PLEASE SEND A COMPLETE COPY TO THE ADDRESS SHOWN ON THE
OTHER SIDE
NO ENVELOPE WILL BE NEEDED IF YOU SIMPLY STAPLE THIS COVER

SHEET TO THE COMPLETE COPY.
IP COPIES ARE NO LONGER AVAILABLE PLEASE FORWARD THIS

REQUEST TO THE CORRESPONDENCE FILES.

L -~

=

Bell Laboratories

Subject: An Algorithm for Differential File Comparison date: October 1, 1975
Case- 39199 -- File- 39199-11
from: J. W. Hunt *
M. D. Mclliroy

™: 75-1271-11
MEMORANDUM FOR FILE

The program diff creates a list of what lihes of one file have 10 be changed to bring it into
agreement with a second file or vice versa. It is based on ideas from several sources{l1,2,7,8].
As an example of its work, consider the two files, listed horizontally for brevity:

abcde f g
wabxyze
It is easy to see that the first file can be made into the second by the following prescription, in
which an imaginary line 0 is understood at the beginning of each:
append after line 0: w,
change lines 3 through 4 from: ¢ d
10 X yz,
delete lines 6 through 7, which were: f g.
Going the other way, the first file can be made from the second this way:
deleie line 1, which was: w,
change lines 4 through 6 from: x y z
to: ¢ d,
append after line 7: f g.

Delete, change and append are the only operations available 10 diff. It indicates them by 1-
letter-abbreviations reminiscent of the ged text editor[3] in a form from which both directions
of change can be read off. By exchanging ‘a’ for ‘d’ and line numbers of the first file with
those of a second, we get a recipe for going the other way. In these recipes lines of the origi-
nal file are flagged with ‘<’, lines of the derived file are flagged with ‘>":

0al,l 1,140
>w . <w
34c46 46¢c34
<c¢ < X
<d <y
- <z

> x .-

>y >c¢
>z >d
6,7d 7 7a6,7
<f >f
<g >g

* Department of Electrical Engineering,
Stanford University

In mathematical terms, the goal of diff is to report the minimum number of line changes
necessary to convert one file into the other. Equivalently, the goal is to maximize the number
of lines left unchanged, or to find the longest common subsequence of lines that occurs in both
files. :

1. Solving the longest common subsequence problem

No uniformly good way of solving the longest common subsequence problem is known.
The simplest idea—go through both files line by line until they disagree, then search forward
somehow in both until a matching pair of lines is encountered, and continue similarly—
reduces the problem to implementing the ‘somehow’, which doesn’t help much. However, in
practical terms, the first step of stripping matching lines from the beginning (and end) is help-
ful, for when changes are not too pervasive stripping can make inroads into the (nonlinear)
running time of the hard part of the problem. .

An extremely simple heuristic for the ‘somehow’, which works well when there are rela-
tively few differences between files and relatively few duplications of lines within one file, has
been used by Johnson and others[1,11]: Upon encountering a difference, compare the kth line
ahead in file 1 with each of the k lines beginning with the mismatched line in file 2, for
k=12,... until a match is found. On more difficult problems, the method can missynchronize
badly. To keep a lid on time and space, k is customarily limited, with the result that longer
changed passages defeat resynchronization.

There is a simple dynamic programming scheme for the longest common subsequence
problem(4,5]. Call the lines of the first file 4;,/ =],..m and the lines of the second
B;, j=1,..n. Let P; be the length of the longest subsequence common to the first / lines of
tﬁe first file and the first j lines of the second. Evidently P; satisfies

Py =0 i=0,..m,

!
Py =0 j=0..n
1+ Py ot if 4, =5,
Py =|max(P,_, P,,_y) if4=B ISiSmISISn

Then P,,, is the length of the desired longest common subsequence. From the whole P; array
that was generated in calculating P,,,, it is easy to recover the indices of the elements of a
longest common subsequence.

Unfortunately the dynamic program is O(mn) in time, and—even worse—O(mn) in
space. Noting that each row P; of the difference equation is simply determined from P;_, D.
S. Hirschberg invented a clever scheme that first calculates P, in O(n) space and then recov-
ers the sequence using né more space and about as much time again as is needed to find P,,[6].

The diff algorithm improves on the simple dynamic program by attending only to essen-
tial matches, the breaking of which would change P. The essential matches, dubbed ‘k-
candidates’ by Hirschbergl7], occur where 4, =B; and P; > max(P,_; ;.P, ;). A k-candidate
is a pair of indices (i) such that (1)-4; =B, (ﬁ) a longest common subsequence of length &
exists between the first / elements of the first file and the first j elements of the second, and
(3) no common subsequence of length k exists when either / or j is reduced. A candidate is a
pair of indices that is a k-candidate for some k. Evidently a longest common subsequence can
be found among a complete list of candidates.

If (i.j;) and (ip.jp) with iy <i, are both k-candidates, then j; >j,. For if j; =j,,
(iy.j,) would violate condition (3) of the definition; and if j; </, then the common subse-
quence of length k ending with (i},j;) could be extended to a common subsequence of length
k+1 ending with (i,/5).

*

TN

o~

~

()

The candidate methods have a simple graphical interpretation. In Figure 1 dots mark grid
points (i,j) for which 4, = B;. Because the dots portray an equivalence relation, any two hor-
izontal lines or any two vertical lines on the figure have either no dots in common or carry ex-
actly the same dots. A common subsequence is a set of dots that can be threaded by a strictly
monotone increasing curve. Four such curves have been drawn in the figure. These particular
curves have been chosen to thread only (and all) dots that are candidates. The values of k for
these candidates are indicated by transecting curves of constant k. These latter curves, shown
dashed, must all decrease monotonically. The number of candidates is obviously less than mn,
except in trivial cases, and in practical file comparison turns out to be very much less, so the
list of candidates usually can be stored quite comfortably.

cbce.b

6

Figure 1. Common subsequences and candidates in comparing

abcabba
cbabac

2. The method of diff
The dots of Figure 1 are stored in linear space as follows:

(1) Construct lists of the equivalence classes of elements in the second file. These lists occu-
py O(n) space. They can be made by sorting the lines of the second file.

(2) Associate the appropriate equivalence class with each element of the first file. This asso-
ciation can be stored in O(m) space. In effect now we have a list of the dots for each
vertical.

Having this setup, we proceed to generate the candidates left-to-right. Let K be a vector
designating the rightmost k-candidate yet seen for each k. To simplify what follows, pad the
vector out to include a dummy O-candidate (0,0) and, for all k that do not yet have a candidate,
a dummy ‘fence’ candidate (m+1,n+1), whose components will compare high against the
components of any other candidate. K begins empty, except for padding, and gets updated as
we move right. Thus after processing the 4th vertical, marked ‘a’ in Figure 1, the list of right-
most candidates is

0,0) 3,1) 43) @45) 87)

Now a new k-candidate on the next vertical is the lowest dot that falls properly between the
ordinates of the previous (k —1)- and k-candidates. Two such dots are on the Sth vertical in
Figure 1. They displace the 2-candidate and 3-candidate entries to give the new vector K:

00) 31) (52) 54) B7)

The two dots on the 6th vertical fall on, rather than between, ordinates in this list and so are
not candidates. Each new k-candidate is chained to the previous (k —1)-candidate to facilitate
later recovery of the longest common subsequence. (For more detail see the Appendix.)

The determination of candidates on a given vertical is thus a specialized merge of the list
of dots on that vertical into the current list of rightmost candidates. When the number of dots
is O(1), binary search in the list of at most min (mn) candidates will do the merge in time
O(log m). Since this case of very few dots per vertical is typical in practice, we are led to
merge each dot separately by binary search, even though the worst case time to process a verti-
cal becomes O(nlogm), as against O (m+ n) for ordinary merging.

3. Hashing

To make comparison of reasonably large files (thousands of lines) possible in random ac-
cess memory, diff hashes each line into one computer word. This may cause some unequal
lines to compare equal. Assuming the hash function is truly random, the probability of a
spurious equality on a given comparison that should have turned out unequal is 1/M, where
the hash values range from 1 to M. A longest common subsequence of length k determined
from hash values can thus be expected to contain about k/M spurious matches when k < M,
so a sequence of length k will be a spurious ‘jackpot’ sequence with probability about k&/M. On
our 16-bit machine jackpots on 5000-line files should happen less than 10% of the time and on
500-line files less than 1% of the time.

Diff guards against jackpots by checking the purported longest common subsequence in
the original files. What remains after spurious equalities are edited out is accepted as an
answer even though there is a small possibility that it is not actually a longest common subse-
quence. Diff announces jackpots, so these cases tend to get scrutinized fairly hard. In two
years we have had brought to our attention only one jackpot where an edited longest subse-
quence was actually short—in that instance short by one.

4. Complexity

In the worst case, the diff algorithm doesn’t perform substantially better than the trivial
dynamic program. From Section 2 it follows that the worst case time complexity is dominated
by the merging and is in fact O(mnlogm) (although O(m (m+n)) could be achieved). Worst
case space complexity is dominated by the space required for the candidate list, which is
O(mn) as can be seen by counting the candidates that arise in comparing the two files

abcabcabec..
acbacbachb..

This problem is illustrated in Figure 2. When m =n the Kkite-shaped area in which the candiQ
dates lie is 1/2 the total area of the diagram, and (asymptotically) 1/3 of the grid points in the
kite are candidates, so the number of candidates approaches n2/6 asymptotically.*

In practice, diff works much better than the worst case bounds would indicate. Only rare-
ly are more than min (m,n) candidates found. In fact an early version with a naive storage al-
location algorithm that provided space for just n candidates first overflowed only after two
months of use, during which time it was probably run more than a hundred times. Thus we
have good evidence that in a very large percentage of practical cases diff requires only linear
space.

* Direct counting shows that there are | (4mn —m? —n2+2m+ 2n+6)/12| candidates when m—1 and #—1 differ by at
most a factor of 2. The floor is exact whenever n—1 and m —1 are muliiples of 6.

)

)

-~

[7—

?
|
VERNEAN

A
A
%/4 +
2 ISERDER

s

Figure 2. Common subsequences and candidates in comparing

abcabcabc.
acbacbach.

As for practical time complexity, the central algorithm of diff is so fast that even in the
biggest cases our implementation can handle (about 3500 lines) almost half the run time is still
absorbed by simple character handling for hashing, jackpot checking, etc., that is linear in the
total number of characters in the two files. Typical times for comparing 3500-line files range
from 1/4 10 3/4 cpu minutes on a PDP11/45. By contrast, a speeded-up variant of Hirschberg’s
dynamic programming algorithm[6)] took about 5 cpu minutes on 3500-line files. The heuristic
algorithm sketched at the beginning of Section 1 typically runs about 2 or 3 times as fast as diff
on long but trivially different files, but loses much of that advantage on more difficult cases
that are within the competence of both methods. Since the failure modes of the two programs
are quite different, it is useful to have both on hand.

J. W. Hunt
. M. D. Mcliroy
MH-1271-MDM-gam
Attachments
References

Appendix

(1]
{21

3]
[4]

(5]
(6]
7
(8]
191

References

S. C. Johnson, ‘ALTER - A Comdeck Comparing Program,” MM71-1373-5.

Generalizing from a special case solved by T. G Szymanskil8], H. S. Stone proposed and J.
W. Hunt refined and implemented the first version of the candidate-listing algorithm
used by diff; and embedded it in an older framework due to M. D. Mcliroy. A variant of
this algorithm was also elaborated by Szymanski{10]. We have had many useful discus-
sions with A. V. Aho and J. D Uliman. M. E. Lesk moved the program from UNIX to
0S/360.

‘Tutorial Introduction to QED Text Editor,” Murray Hill Computing Center' MHCC-002.

S. B. Needleman. and C. D. Wunsch, ‘A General Method Applicable to the Search for
Similarities in the Amino Acid Sequence,” J Mo/ Biol 48 (1970) 443-53.

D. Sankoff, ‘Matching Sequences Under Deletion/Insertion Constraints, Proc Nat Acad Sci
US4 69 (1972) 4-6.

D. S. Hirschberg, ‘A Linear Space Algorithm for Computing Maximal Common Subse-
quences,” CACM 18 (1975) 341-3.

D. S. Hirschberg, ‘The Longest Common Subsequence Problem,” Doctoral Thesis, Prince-
ton 1975.

T. G Szymanski, ‘A Special Case of the Maximal Common Subsequence Probiem,” Com-
puter Science Lab TR-170, Princeton University 1975

Michael L. Fredman, ‘On Computing the Length of Longest Increasing Subsequences,’
Discrete Marh 11 (1975) 29-35.

[10] T.G. Szymanski, ‘A Note on the Maximal Common Subsequence Problem,’ submitted for

publication. :

[11] The programs called proof, written by E. N. Pinson and M. E. Lesk for UNIX and GECOS

use the heuristic algorithm for differential file comparison.

)

Appepdix

A.1 Summary of the diff algorithm

Algorithm to find the longest subsequence of lines common to file 1, whose length is m lines,
and file 2, n lines.

Steps 1 through 4 determine equivalence classes in file 2 and associate them with lines in file 1
in preparation for the central algorithm. (The diff program that is in actual use does the work
of these steps somewhat differently.)

1. Let V be a vector of elements structured (serial, hash), where serial is a line number and
hash is an integer. Set

VIil1—= GH()) j=1l,..n,
where H () is the hash value of line j in file 2.
2. Sort Vinto ascending order on hash as primary key and serial as secondary key.
3. Let E be a vector of elements structured (serial,/ast). Then set
Eljl — (Vljlserial f(j)) j=1,..n,
E[0] «— (O.true),
where

| tre if j=nor VIjlhash#=V[j+1).hash
SU) =] false otherwise.
E lists all the equivalence classes of lines in file 2, with /ast = true on the last element of
each class. The elements are ordered by serial within classes.
4. Let Pbe a vector of integers. For i =1,..,m set

) Jsuch that E[j—11.last = true and H (i) =V|j).hash
Plil = 1 0 if no such Jj exists,
where H (/) is the hash value of line i of file 1. The j values can be found by binary

search in V.

Pli], if nonzero, now points in E to the beginning of the class of lines in file 2 equivalent
to line i in file 1.

Steps 5 and 6 are the longest common subsequence algorithm proper.

5. Let candidate(a,b,previous) be a reference-valued constructor, where a and b are line
numbers in file 1 and file 2 respectively and previous is nil or a reference to a candidate.

Let K[0:min (m,n) +1] be a vector of references to candidates. Let k be the index of the
last usefully filled element of K. Initialize

K[0] — candidate (0,0,nil),
K[1] — candidate (m+ 1,n+ 1,nil),
k—0.
K[1] is a fence beyond the last usefully filled element.
6. Fori=1,.,m,if P[i]#0 do merge (K ,k,i,E,P[i]) to update K and k (see below).
Steps 7 and 8 get a more convenient representation for the longest common subsequence.

-~

Let J be a vector of integers. Initialize
Jlil=0 i=0,.,m

For each element c of the chain of candidates referred to by K[k] and linked by previous
references set

Jlc.a]l — c.b.

The nonzero elements of J now pick out a longest common subsequence, possibly includ-
ing spurious ‘jackpot’ coincidences. The pairings between the two files are given by

{GJ1D) | Jl=0).

The next step weeds out jackpots.

9.

For i =1,...m, if J[i1#0 and line i in file 1 is not equal to line J{/] in file 2, set
Jlil—0.

This step requires one synchronized pass through both files.

A.2 Storage management

To maximize capacity, storage is managed in diff per the following notes, which are keyed to
the steps in the preceding summary. After each step appear the number of words then in use,
except for a small additive constant, assuming that an integer or a pointer occupy one word.

1

Storage for V can be grown as file 2 is read and hashed. The value of » need not be
known in advance. [2n words]

Though E contains information already in ¥, it is more compact because the /ast field
only takes one bit, and can be packed into the same word with the seria/ field. £ can be
overlaid on V.serial. [2n words]

Pcan be grown as was Vin step 1. [2n+ m words]

V is dead after this step. Storage can be compacted to contain only the live information,
Eand P. [n+m words]

Candidates can be allocated as needed from the free storage obtained in the previous
compaction, and from space grown beyond that if necessary. Because they are chained,
candidates do not have to be contiguous.

During the ith invocation of merge, the first i elements of P are dead, and at most the first
i+2 elements of K are in use, so with suitable equivalencing K can be overlaid on P.
[n+ m+ 3 x (number of candidates)]

Pand K are dead, so Jcan be overlaid on them. E is dead also. [m+ 3 x (number of can-
didates)]

A.3 Summary of merge step

procedure merge (K k,i.E,p)

K is as defined in step 5 above, by reference

k is index of last filled element of K, by reference

i is current index in file 1, by value

E is as defined in Step 3 above, by reference

pis index in E of first element of class of lines in file 2 equivalent to line / of file 1, by
value

)

- F= e

Let r be an integer and ¢ be a reference to a candidate. ¢ will always refer to the last can-
didate found, which will always be an r-candidate. K[r] will be updated with this refer-
ence once the previous value of K[r] is no longer needed. Initialize

r—20,
c— KI0].
(By handling the equivalence class in reverse order, Szymanski[10] circumvents the need
to delay updating K [r], but generates extra ‘candidates’ that waste space.)
Do steps 3 through 6 repeatedly.
3. Letj=Elplserial

Search Kl[r:k] for an element Kl[s] such that K[s]—b<j and Kls+1l—b>/
(Note that X is ordered on K[.]—b, so binary search will work.)

If such an element is found do steps 4 and $.
4. If K[s+1]—b>j, simultaneously set
Klr}—c¢
r—s+1,
¢ ~— candidare (i,j,K [s]).
5. Ifs=kdo:
Simultaneously set
Klk+2] = K[k+1] (move fence),
k—k+1.
Break out of step 2’s loop.
6. If Elpl.last = true, break out of step 2’s loop.

Otherwise set p— p+1.
Set Klr] — ¢

