LEARN — Computer-Aided Instruction on UNIX
(Second Edition)

Brian W. Kernighan
Michael E. Lesk

. Bell Laboratories
Murray Hill, New Jersey 07974

ABSTRACT

This paper describes the second version of the /earn program for interpret-
ing CAI scripts on the UNIXt operating system, and a set of scripts that provide
a computerized introduction to the system.

Six current scripts cover basic commands and file handling, the editor,
additional file handling commands, the egn program for mathematical typing,
the ‘““—ms” package of formatting macros, and an introduction to the C pro-
gramming language. These scripts now include a total of about 530 lessons.

Many users from a wide variety of backgrounds have used learn to
acquire basic UNIX skills. Most usage involves the first two scripts, an introduc-
tion to files and commands, and the text editor.

The second version of learn is about four times faster than the previous
one in CPU utilization, and much faster in perceived time because of better
overlap of computing and printing. It also requires less file space than the first
version. Many of the lessons have been revised; new material has been added
to reflect changes and enhancements in the UNIX system itself. Script-writing is
also easier because of revisions to the script language.

January 30, 1979

tUNIX is a Trademark of Bell Laboratories.

LEARN — Computer-Aided Instruction on UNIX
(Second Edition)

Brian W. Kernighan
Michael E. Lesk

Bell Laboratories
Murray Hill, New Jersey 07974

1. Intreduction.

Learn is a driver for CAI scripts. It is intended to permit the easy composition of lessons
and lesson fragments to teach people computer skills. Since it is teaching the same system on
which it is implemented, it makes direct use of UNIXT facilities to create a controlled UNIX
environment. The system includes two main parts: (1) a driver that interprets the lesson
scripts; and (2) the lesson scripts themselves. At present there are six scripts:

— basic file handling commands

— the UNIX text editor ed

— advanced file handling

— the egn language for typing mathematics

— the “—ms”’ macro package for document formatting

— the C programming language _

The purported advantages of CAI scripts for training in computer skills include the follow-
ing:

(a) students are forced to perform the exercises that cre in fact the basis of training in

any case;

(b) students receive immediate feedback and confirmation of progress;
(c) students may progress at their own rate;

(d) no schedule requirements are 1mposed students may study at any time convenient
-for them,

(e) the lessons may be improved individually and ‘the improvements are immediately
available to new users;

(f) since the student has access to a computer for the CAI script there is a place to do
exercises;

(8) the use of high technology will improve student motivation and the interest of their
management.

Opposed to this, of course, is the absence of anyone to whom the student may direct questions.
If CAI is used without a *‘counselor’’ or other-assistance, it should properly be compared to a
textbook, lecture series, or taped course, rather than to a seminar. CAI has been used for
many years in a variety of educational areas.!.2.3 The use of a computer to teach itself, how-
ever, offers unique advantages. The skills developed to get through the script are exactly those
needed to use the computer; there is no waste effort.

The scripts written so far are based on some familiar assumptions about education; these

1UNIX is a Trademark of Bell Laboratories.

(34

-2

assumptions are outlined in the next section. The remaining sections describe the operation of
the script driver and the particular scripts now available. The driver puts few restrictions on the
script writer, but the current scripts are of a rather rigid and stereotyped form in accordance
with the theory in the next section and practical limitations.

2. Educational Assumptions and Design.

First, the way to teach people how to do something is to have them do it. Scripts should
not contain long pieces of explanation; they should instead frequently ask the student to do
some task. So teaching is always by example: the typical script fragment shows a small example
of some technique and then asks the user to either repeat that example or produce a variation
on it. All are intended to be easy enough that most students will get most questions right, rein-
forcing the desired behavior.

Most lessons fall into one of three types. The simplest presents a lesson and asks for a
yes or no answer to a question. The student is given a chance to experiment before replying.
The script checks for the correct reply. Problems of this form are sparingly used.

The second type asks for a word or number as an answer. For exampie a lesson on files
might say

How many files are there in the current directory? Type “‘answer N, where N is the number
of files. . .

The student is expected to respond (perhaps after experimenting) with
answer 17

or whatever. Surprisingly often, however, the idea of a substitutable argument (i.e., replacing
N by 17) is difficult for non-programmer students, so the first few such lessons need real care.

The third type of lesson is open-ended — a task is set for the student, appropriate parts of
the input or output are monitored, and the student types ready when the task is done. Figure 1
shows a sample dialog that illustrates the last of these, using two lessons about the car (con-
catenate, i.e., print) command taken from early in the script that teaches file handling. Most
learn lessons are of this form.

After each correct response the computer congratulates the student and indicates the les-
son number that has just been completed, permitting the student to restart the script after that
lesson. If the answer is wrong, the student is offered a chance to repeat the lesson. The
‘“‘speed’’ rating of the student (explained in section 5) is given after the lesson number when
the lesson is completed successfully; it is printed only for the aid of script authors checking out
possible errors in the lessons.

It is assumed that there is no foolproof way to determine if the student truly ‘‘under-
stands’” what he or she is doing; accordingly, the current learn scripts only measure perfor-
mance, not comprehension. If the student can perform a given task, that is deemed to be
“‘learning.”*¢

The main point of using the computer is that what the student does is checked for
correctness immediately. Unlike many CALI scripts, however, these scripts provide few facilities
for dealing with wrong answers. In practice, if most of the answers are not right the script is a
failure; the universal solution to student error is to provide a new, easier script. Anticipating
possible wrong answers is an endless job, and it is really easier as well as better to provide a
simpler script.

Along with this goes the assumption that anything can be taught to anybody if it can be
broken into sufficiently small pieces. Anything not absorbed in a single chunk is just subdi-
vided.

To avoid boring the faster students, however, an effort is made in the files and editor
scripts to provide three tracks of different difficulty. The fastest sequence of lessons is aimed at
roughly the bulk and speed of a typical tutorial manual and should be adequate for review and
for well-prepared students. The next track is intended for most users and is roughly twice as

Figure 1: Sample dialog from basic files script
(Student responses in italics; ‘8’ is the prompt)

A file can be printed on your terminal
by using the "cat" command. Just say
"cat file" where “file” is the file name.
For example, there is a file named
"food" in this directory. List it
by saying "cat food", then type "ready”.
$ cat food

this is the file

named food.
$ ready

Good. Lesson 3.3a (1)

Of course, you can print any file with "cat".
In particular, it is common to first use

"Is" to find the name of a file and then "cat"
to print it. Note the difference between

"Is", which tells you the name of the file,
and "cat", which telils you the contents.

One file in the current directory is named for
a President. Print the file, then type "ready”.
$ cat President

cat: can’t open President

$ ready

Sorry, that’s not right. Do you want to try again? yes

Try the problem again.

$is

.ocopy

X1

roosevelt

$ cat roosevelt
this file is named roosevelt
and contains three lines of
text.

$ ready

Good. Lesson 3.3b (0)
The "cat” command can also print several files

at once. In fact, it is named "cat" as an abbreviation
for "concatenate”....

long. Typically, for example, the fast track might present an idea and ask for a variation on the
example shown; the normal track will first ask the student to repeat the example that was
shown before attempting a variation. The third and slowest track, which is often three or four
times the length of the fast track, is intended to be adequate for anyone. (The lessons of Fig-
ure 1 are from the third track.) The multiple tracks also mean that a student repeating a course
is unlikely to hit the same series of lessons; this makes it profitable for a shaky user to back up

’l

-4.

and try again, and many students have done so.

The tracks are not completely distinct, however. Depending on the number of correct
answers the student has given for the last few lessons, the program may switch tracks. The
driver is actually capable of following an arbitrary directed graph of lesson sequences, as dis-
cussed in section 5. Some more structured arrangement, however, is used in all current scripts
to aid the script writer in organizing the material into lessons. It is sufficiently difficult to write
lessons that the three-track theory is not followed very closely except in the files and editor
scripts. Accordingly, in some cases, the fast track is produced merely by skipping lessons from
the slower track. In others, there is essentially only one track.

The main reason for using the /earn program rather than simply writing the same material
as a workbook is not the selection of tracks, but actual hands-on experience. Learning by doing
is much more effective than pencil and paper exercises.

Learn also provides a mechanical check on performance. The first version in fact would
not let the student proceed unless it received correct answers to the questions it set and it
would not tell a student the right answer. This somewhat Draconian approach has been
moderated in version 2. Lessons are sometimes badly worded or even just plain wrong; in such
cases, the student has no recourse. But if a student is simply unable to complete one lesson,
that should not prevent access to the rest. Accordingly, the current version of learn allows the
student to skip a lesson that he cannot pass; a ‘‘no’” answer to the ‘‘Do you want to try again?”’
question in Figure 1 will pass to the next lesson. It is still true that learn will not tell the stu-

dent the right answer.

Of course, there are valid objections to the assumptions above. In particular, some stu-
dents may object to not understanding what they are doing; and the procedure of smashing
everything into small pieces may provoke the retort ‘‘you can’t cross a ditch in two jumps.”
Since writing CAI scripts is considerably more tedious than ordinary manuals, however, it is
safe to assume that there will always be alternatives to the scripts as a way of learning. In fact,
for a reference manual of 3 or 4 pages it would not be surprising to have a tutorial manual of
20 pages and a (multi-track) script of 100 pages. Thus the reference manual will exist long
before the scripts.

3. Secripts.

As mentioned above, the present scripts try at most to follow a three-track theory. Thus
little of the potential complexity of the possible directed graph is employed, since care must be
taken in lesson construction to see that every necessary fact is presented in every possibie path
through the units. In addition, it is desirable that every unit have alternate successors to deal
with student errors.

In most existing courses, the first few lessons are devoted to checking prerequisites. For
example, before the student is allowed to proceed through the editor script the script verifies
that the student understands files and is able to type. It is felt that the sooner lack of student
preparation is detected, the easier it will be on the student. Anyone proceeding through the
scripts should be getting mostly correct answers; otherwise, the system will be unsatisfactory
both because the wrong habits are being learned and because the scripts make little effort to
deal with wrong answers. Unprepared students should not be encouraged to continue with
scripts.

Theére are some preliminary items which the student must know before any scripts can be
tried. In particular, the student must know how to connect to a UNIX system, set the terminal
properly, log in, and execute simple commands (e.g., learn itself). In addition, the character
erase and line kill conventions (# and @) should be known. It is hard to see how this much
could be taught by computer-aided instruction, since a student who does not know these basic
skills will not be able to run the learning program. A brief description on paper is provided
(see Appendix A), although assistance will be needed for the first few minutes. This assis-
tance, however, need not be highly skilled.

-5.

The first script in the current set deals with files. It assumes the basic knowledge above
and teaches the student about the /s, car, mv, rm, cp and diff commands. It also deals with
the abbreviation characters *, ?, and [] in file names. It does not cover pipes or 1/0 redirec-
tion, nor does it present the many options on the /s command.

This script contains 31 lessons in the fast track; two are intended as prerequisite checks,
seven are review exercises. There are a total of 75 lessons in all three tracks, and the instruc-
tional passages typed at the student to begin each lesson total 4,476 words. The average lesson
thus begins with a 60-word message. In general, the fast track lessons have somewhat longer
introductions, and the slow tracks somewhat shorter ones. The longest message is 144 words
and the shortest 14.

The second script trains students in the use of the context editor ed, a sophisticated editor
using regular expressions for searching.> All editor features except encryption, mark names and
‘,’ in addressing are covered. The fast track contains 2 prerequisite checks, 93 lessons, and a
review lesson. It is supplemented by 146 additional lessons in other tracks.

A comparison of sizes may be of interest. The ed description in the reference manual is
2,572 words long. The ed tutorial® is 6,138 words long. The fast track through the ed script is
7,407 words of explanatory messages, and the total ed script, 242 lessons, has 15,615 words.
The average ed lesson is thus also about 60 words; the largest is 171 words and the smallest 10.
The original ed script represents about three man-weeks of effort.

The advanced file handling script deals with /s options, I/0 diversion, pipes, and support-
ing programs like pr, we, 1ail, spell and grep. (The basic file handling script is a prerequisite.)
It is not as refined as the first two scripts; this is reflected at least partly in the fact that it pro-
vides much less of a full three-track sequence than they do. On the other hand, since it is per-
ceived as ‘‘advanced,” it is hoped that the student will have somewhat more sophistication and
be better able to cope with it at a reasonably high level of performance.

A fourth script covers the egn language for typing mathematics. This script must be run
on a terminal capable of printing mathematics, for instance the DASI 300 and similar Diablo-
based terminals, or the nearly extinct Model 37 teletype. Again, this script is relatively short of
tracks: of 76 lessons, only 17 are in the second track and 2 in the third track. Most of these
provide additional practice for students who are having trouble in the first track.

The —ms script for formatting macros is a short one-track only script. The macro pack-
age it describes is no longer the standard, so this script will undoubtedly be superseded in the
future. Furthermore, the linear style of a single learn script is somewhat inappropriate for the
macros, since the macro package is composed of many independent features, and few users
need all of them. It would be better to have a selection of short lesson sequences dealing with
the features independently.

The script on C is in a state of transition. It was originally designed to follow a tutorial on
C, but that document has since become obsolete. The current script has been partially con-
verted to follow the order of presentation in The C Programming Language,” but this job is not
complete. The C script was never intended to teach C; rather it is supposed to be a series of
exercises for which the computer provides checking and (upon success) a suggested solution.

This combination of scripts covers much of the material which any user will need to know
to make effective use of the UNIX system. With enlargement of the advanced files course to
include more on the command interpreter, there will be a relatively complete introduction to
UNIX available via learn. Although we make no pretense that fearn will replace other ins:ruc-
tional materials, it should provide a useful supplement to existing tutorials and reference rianu-
als. :

Ll

4. Experience with Students.

Learn has been installed on many different UNIX systems. Most of the usage is on the
first two scripts, so these are more thoroughly debugged and polished. As a (random) sample
of user experience, the learn program has been used at Bell Labs at Indian Hill for 10,500 les-
sons in a four month period. About 3600 of these are in the files script, 4100 in the editor, and
1400 in advanced files. The passing rate is about 80%, that is, about 4 lessons are passed for
every one failed. There have been 86 distinct users of the files script, and 58 of the editor. On
our system at Murray Hill, there have been nearly 4000 lessons over four weeks that include
Christmas and New Year. Users have ranged in age from six up.

It is difficult to characterize typical sessions with the scripts; many instances exist of some-
one doing one or two lessons and then logging out, as do instances of someone pausing in a
script for twenty minutes or more. In the earlier version of learn, the average session in the
files course took 32 minutes and covered 23 lessons. The distribution is quite broad and
skewed, however; the longest session was 130 minutes and there were five sessions shorter
than five minutes. The average lesson took about 80 seconds. These numbers are roughly typ-
ical for non-programmers; a UNIX expert can do the scripts at approximately 30 seconds per les-
son, most of which is the system printing.

At present working through a section of the middle of the files script took about 1.4
seconds of processor time per lesson, and a system expert typing quickly took 15 seconds of
real time per lesson. A novice would probably take at least a minute. Thus, as a rough approx-
imation, a UNIX system could support ten students working simultancously with some spare
capacity.

S. The Script Interpreter.

The learn program itself merely interprets scripts. It provides facilities for the script writer
to capture student responses and their effects, and simplifies the job of passing control to and
recovering control from the student. This section describes the operation and usage of the
driver program, and indicates what is required to produce a new script. Readers only interested
in the existing scripts may skip this section.

The file structure used by learn is shown in Figure 2. There is one parent directory
(named /ib) containing the script data. Within this directory are subdirectories, one for each
subject in which a course is available, one for logging (named /og), and one in which user sub-
directories are created (named play). The subject directory contains master copies of all les-
sons, plus any supporting material for that subject. In a given subdirectory, each lesson is a
single text file. Lessons are usually named systematically; the file that contains lesson n is
called Ln.

When /earn is executed, it makes a private directory for the user to work in, within the
learn portion of the file system. A fresh copy of all the files used in each lesson (mostly data
for the student to operate upon) is made each time a student starts a lesson, so the script writer
may assume that everything is reinitialized each time a lesson is entered. The student directory
is deleted after each session: any permanent records must be kept elsewhere.

The script writer must provide certain basic items in each lesson:
(1) the text of the lesson;
(2) the set-up commands to be executed before the user gets control;
(3) the data, if any, which the user is supposed to edit, transform, or otherwise process;

(4) the evaluating commands to be executed after the user has finished the lesson, to decide
whether the answer is right; and .

(5) alist of possible successor lessons.

Learn tries to minimize the work of bookkeeping and installation, so that most of the effort
involved in script production is in planning lessons, writing tutorial paragraphs, and coding tests
of student performance.

Figure 2: Directory structure for learn

lib
play
student1
files for studentl...
student?
files for student2...
files
LO0.1a lessons for files course
LO.1b
editor

(other courses)

log

The basic sequence of events is as follows. First, learn creates the working directory.
Then, for each lesson, learn reads the script for the lesson and processes it a line at‘a time.
The lines in the script are: (1) commands to the script interpreter to print something, to create
a files, to test something, etc.; (2) text to be printed or put in a file; (3) other lines, which are
sent to the shell to be executed. One line in each lesson turns control over to the user; the
user can run any UNIX commands. The user mode terminates when the user types yes, no,
ready, or answer. At this point, the user’s work is tested; if the lesson is passed, a new lesson
is selected, and if not the old one is repeated.

Let us illustrate this with the script for the second lesson of Figure 1; this is shown in
Figure 3.

Lines which begiﬁ with # are commands to the learn script interpreter. For example,
#print .)

causes printing of any text that follows, up to the next line that begins with a sharp.
#prim file

prints the contents of file; it is the same as car file but has less overhead. Both forms of #print
have the added property that if a lesson is failed, the #print will not be executed the second
time through; this avoids annoying the student by repeating the preamble to a lesson.

#create filename

creates a file of the specified name, and copies any subsequent text up to a # to the file. This
is used for creating and initializing working files and reference data for the lessons.

#user

gives control to the student; each line he or she types is passed to the shell for execution. The
#user mode is terminated when the student types one of yes, no, ready or answer. At that
time, the driver resumes interpretation of the script.

#copyin
#uncopyin

Anything the student types between these commands is copied onto a file called .copy. This lets
the script writer interrogate the student’s responses upon regaining control.

(®

Figure 3: Sample Lesson

#print
Of course, you can print any file with "cat".
In particular, it is common to first use
"Is" to find the name of a file and then "cat”
to print it. Note the difference between
"Is", which tells you the name of the files,
and "cat", which tells you the contents.
One file in the current directory is named for
a President. Print the file, then type "ready".
#create roosevelt ,

this file is named roosevelt

and contains three lines of

text.
#copyout
#user
#uncopyout
tail —3 .ocopy >X1
#cmp X1 roosevelt

#log
#next
3.2b2
#copyout
#uncopyout

Between these commands, any material typed at the student by any program is copied to the file
.ocopy. This lets the script writer interrogate the effect of what the student typed, which true
believers in the performance theory of learning usually prefer to the student’s actual input.
#pipe
#unpipe
Normalily the student input and the script commands are fed to the UNIX command interpreter
(the ““shell®’) one line at a time. This won't do if, for example, a sequence of editor commands
is provided, since the input to the editor must be handed to the editor, not to the shell.
Accordingly, the material between #pipe and #unpipe commands is fed continuously through a
pipe so that such sequences work. If copyout is also desired the copyour brackets must include
the pipe brackets.

There are several commands for setting status after the student has attempted the lesson.
#cmp filel file2
is an in-line implementation of cmp, which compares two files for identity.
#match stuff .
The last line of the student's input is compared to s, and the success or fail status is set
according to it. Extraneous things like the word answer are stripped before the comparison is
made. There may be several #match lines; this provides a convenient mechanism for handling

multiple “‘right’* answers. Any text up to a # on subsequent lines after a successful #march is
printed; this is illustrated in Figure 4, another sample lesson.

#bad stuff

This is similar to #march. except that it corresponds to specific failure answers; this can be
used to produce hints for particular wrong answers that have been anticipated by the script

Figure 4: Another Sample Lesson

#print .

What command will move the current line
to the end of the file? Type

"answer COMMAND", where COMMAND is the command.
#copyin

#user

#uncopyin

#match m$

#match .m$

"m$" is easier.

#log

#next

63.1d 10

writer.

#succeed
#fail
print a message upon success or failure (as determined by some previous mechanism).

When the student types one of the ‘“‘commands” yes, no, ready, or answer, the driver
terminates the #user command, and evaluation of the student’s work can begin. This can be
done either by the built-in commands above, such as #match and #cmp, or by status returned
by normal UNIX commands, typically grep and test. The last command should return status true
(0) if the task was done successfully and false (non-zero) otherwise; this status return tells the
driver whether or not the student has successfully passed the lesson.

Performance can be logged:

#log file

writes the date, lesson, user name and speed rating, and a success/failure indication on file.
The command

#log

by itself writes the logging information in the logging direétory within the Jearn hierarchy, and
is the normal form.

#next

- is followed by a few lines, each with a successor lesson name and an optional speed rating on it.
A typical set might read

25.1a 10
25.2a 5§
25.3a 2

indicating that unit 25.1a is a suitable follow-on lesson for students with a speed rating of 10
units, 25.2a for student with speed near 5, and 25.3a for speed near 2. Speed ratings are main-
tained for each session with a student; the rating is increased by one each time the student gets
a lesson right and decreased by four each time the student gets a lesson wrong. Thus the driver
tries to maintain a level such that the users get 80% right answers. The maximum rating is lim-
ited to 10 and the minimum to 0. The initial rating is zero unless the student specifies a
different rating when starting a session.

If the student passes a lesson, a new lesson is selected and the process repeats. If the stu-
dent fails, a false status is returned and the program reverts to the previous lesson and tries

(L)

-10-

another alternative. If it can not find another alternative, it skips forward a lesson. The stu-
dent can terminate a session at any time by typing bye, which causes a graceful exit from learn.
Hanging up is the usual novice’s way out.)

The lessons may form an arbitrary directed graph, although the present program imposes
a limitation on cycles in that it will not present a lesson twice in the same session. If the stu-
dent is unable to answer one of the exercises correctly, the driver searches for a previous lesson
with a set of alternatives as successors (following the #next line). From the previous lesson
with alternatives one route was taken earlier; the program simply tries a different one.

It is perfectly possible to write sophisticated scripts that evaluate the student’s speed of
response, or try to estimate the elegance of the answer, or provide detailed analysis of wrong
answers. Lesson writing is so tedious already, however, that most of these abilities are likely to
go unused.

The driver program depends heavily on features of the UNIX system that are not available
on many other operating systems. These include the ease of manipulating files and directories,
file redirection, the ability to use the command interpreter as just another program (even in a
pipeline), command status testing and branching, the ability to catch signals like interrupts, and
of course the pipeline mechanism itself. Although some parts of /earn might be transferable to
other systems, some generality will probably be lost.

A bit of history: The first version of fearn had fewer built-in commands in the driver pro-
gram, and made more use of the facilities of the UNIX system itself. For example, file com-
parison was done by creating a cmp process, rather than comparing the two files within learn.
Lessons were not stored as text files, but as archives. There was no concept of the in-line
document; even #print had to be followed by a file name. Thus the initialization for each les-
son was to extract the archive into the working directory (typically 4-8 files), then #print the
lesson text.

The combination of such things made learn rather slow and demanding of system
resources. The new version is about 4 or 5 times faster, because fewer files and processes are
created. Furthermore, it appears even faster to the user because in a typical lesson, the printing
of the message comes first, and file setup with #create can be overlapped with printing, so that
when the program finishes printing, it is really ready for the user to type at it.

It is also a great advantage to the script maintainer that lessons are now just ordinary text
files, rather than archives. They can be edited without any difficulty, and UNIX text manipula-
tion tools can be applied to them. The result has been that there is much less resistance to
going in and fixing substandard lessons.

6. Conclusions

The following observations can be made about secretaries, typists, and other non-
programmers who have used learn:

(a) A novice must have assistance with the mechanics of communicating with the computer
to get through to the first lesson or two; once the first few lessons are passed people can
proceed on their own.

(b) The terminology used in the first few lessons is obscure to those inexperienced with com-
puters. It would help if there were a low level reference card for UNIX to supplement the
existing programmer oriented bulky manual and bulky reference card:

(c) The concept of ‘‘substitutable argument’’ is hard to grasp, and requires help.
(d) They enjoy the system for the most part. Motivation matters a great deal, however.

It takes an hour or two for a novice to get through the script on file handling. The total time
for a reasonably intelligent and motivated novice to proceed from ignorance to a reasonable
ability to create new files and manipulate old ones seems to be a few days, with perhaps half of
each day spent on the machine.

-11 -

The normal way of proceeding has been to have students in the same room with someone
who knows the UNIX system and the scripts. Thus the student is not brought to a halt by
difficult questions. The burden on the counselor, however, is much lower than that on a
teacher of a course. Ideally, the students should be encouraged to proceed with instruction
immediately prior to their actual use of the computer. They should exercise the scripts on the
same computer and the same kind of terminal that they will later use for their real work, and
their first few jobs for the computer should be relatively easy ones. Also, both training and ini-
tial work should take place on days when the hardware and software are working reliably.
Rarely is all of this possible, but the closer one comes the better the result. For example, if it
is known that the hardware is shaky one day, it is better to attempt to reschedule training for
another one. Students are very frustrated by machine downtime; when nothing is happening, it
takes some sophistication and experience to distinguish an infinite loop, a slow but functioning
program, a program waiting for the user, and a broken machine.*

One disadvantage of training with learn is that students come to depend completely on the
CAI system, and do not try to read manuals or use other learning aids. This is unfortunate, not
only because of the increased demands for completeness and accuracy of the scripts, but
because the scripts do not cover all of the UNIX system. New users should have manuals
(appropriate for their level) and read them; the scripts ought to be altered to recommend suit-
able documents and urge students to read them.

There are several other difficulties which are clearly evident. From the student’s
viewpoint, the most serious is that lessons still crop up which simply can’t be passed. Some-
times this is due to poor explanations, but just as often it is some error in the lesson itself — a
botched setup, a missing file, an invalid test for correctness, or some system facility that
doesn’t work on the local system in the same way it did on the development system. It takes
knowledge and a certain healthy arrogance on the part of the user to recognize that the fault is
not his or hers, but the script writer’'s. Permitting the student to get on with the next lesson
regardless does alleviate this somewhat, and the logging facilities make it easy to watch for les-
sons that no one can pass, but it is still a problem. '

The biggest problem with the previous learn was speed (or lack thereof) — it was often
excruciatingly slow and a significant drain on the system. The current version so far does not
seem to have that difficulty, although some scripts, notably egn, are intrinsically slow. egn, for
example, must do a lot of work even to print its introductions, let alone check the studem
responses, but delay is perceptibie in all scripts from time to time.

Another potential problem is that it is possible to break learn madvertently, by pushing
interrupt at the wrong time, or by removing critical files, or any number of similar slips. The

defenses against such problems have steadily been improved, to the point where most students -

should not notice difficuities. Of course, it will always be possible to break learn maliciously,
but this is not likely to be a problem.

One area is more fundamental — some commands are sufficiently global in their effect
that learn currently does not allow them to be executed at all. The most obvious is c¢d, which
changes to another directory. The prospect of a student who is learning about directories inad-
vertently moving to some random directory and removing files has deterred us from even writ-
ing lessons on cd, but ultimately lessons or such topics probably should be added.

7. Acknowledgments

We are grateful to all those who have tried learn, for we have benefited greatly from their
suggestions and criticisms. In particular, M. E. Bittrich, J. L. Blue, S. I. Feldman, P. A. Fox,
and M. J. McAlpin have provided substantial feedback. Conversations with E. Z. Rothkopf also
provided many of the ideas in the system. We are also indebted to Don Jackowski for serving

* We have even known an expert programmer to decide the computer was broken when he had simply left
his terminal in local mode. Novices have great difficulties with such problems.

AN

(L]

-12-

as a guinea pig for the second version, and to Tom Plum for his efforts to improve the C script.

References

1.

D. L. Bitzer and D. Skaperdas, ““The Economics of a Large Scale Computer Based Educa-
tion System: Plato IV,” pp. 17-29 in Computer Assisted Instruction, Testing and Guidance,
ed. Wayne Holtzman, Harper and Row, New York (1970).

D. C. Gray, J. P. Hulskamp, J. H. Kumm, S. Lichtenstein, and .N. E. Nimmervoll,
“COALA - A Minicomputer CAl System,”” [EEE Trans. Education E-20(1), pp.73-77
(Feb. 1977).

P. Suppes, “On Using Computers to Individualize Instruction,” pp. 11-24 in The Com-
puter in American Education, ed. D. D. Bushnell and D. W. Allen, John Wiley, New York
(1967).

B. F. Skinner, ‘“Why We Need Teaching Machines,’”’ Harv. Educ. Review 31, pp.377-398,
Reprinted in Educational Technology, ed. J. P. DeCecco, Holt, Rinehart & Winston (New
York, 1964). (1961).

K. Thompson and D. M. Ritchie, UNix Programmer’s Manual, Bell Laboratories (1978).
See section ed (I).

B. W. Kernighan, A rutorial introduction to the UNIX text editor, Bell Laboratories internal
memorandum (1974).

B. W. Kernighan and D. M. Ritchie, The C Programming Language, Prentice-Hall, Engle-
wood Cliffs, New Jersey (1978).

APPENDIX A — Page given to new users
How to Get Started

Absolutely basic information for using the UNIX system
Sfrom DASI, Terminet, or HP terminals

First time. BRING A FRIEND. Anyone who has used UNIX before, however briefly, will be of
enormous help for the first fifteen minutes to show you where all the switches are and supply
information missing from this page.

Terminals. Turn the power on. There are many kinds of terminals. Look at the telephone
used with the terminal to distinguish them. Terminals may have
— old style datasets (if the phone set is a small gray box with “‘talk’® and ‘‘data’ buttons
at the right above the handset)
— new style datasets (if the phone set is a black six button phone with a red ‘‘data’ button
on the left, sitting on a rectangular box with a glass front)
— acoustic couplers (if an ordinary telephone is used to call and the termmal has rubber
receptacles that the handset fits into) or
— modems (if the phone used for calling has a white button for the left button of the pair
of buttons the handset usually rests on).
— none of the above (in which case there is probably a switch somewhere that should be
flipped to signal the computer).

Calling in. For your local UNIX call .
- If the terminal doesn’t use a phone, ignore this section, and proceed to Login..
- On terminals with datasets you must push the ‘‘talk’’ button to get a dial tone.
— If the terminal has a separate coupler turn the coupler power on.
— If the line is busy UNIX is probably full.
— If there is no answer UNIX is broken.

Usually the phone rings only once; UNIX answers and whistles at you.

Connecting the terminal. Remember what kind of terminal you have. If it uses a
— dataset, push down the ‘‘data’ button, let it spring back up, and then hang up the
handset (IN THAT ORDER).
— coupler, place the handset in the rubber receptacles. There will be an indication of
where the phone cord should be (it matters). You may get better results by placing the
handset in the receptacles as you dial.
— modem, pull up the white button on the telephone and put the handset down some-
where (but don’t hang up the phone!).

Login. UNIX should type “‘login:’’. If it does not:
— Your terminal may be in ‘“‘local’’ mode — check that the ‘‘local/line’” switch is on
“line’”. Also, Terminets may have their ‘‘interrupt’ light on — turn it off by pushing
‘‘ready.”
- If the message is garbled, the speed is wrong. Somewhere on the terminal is a switch
labeled ‘‘rate’” or ‘‘baud’’ with positions of either **10,15,30” or **110,150,300°". Set it to
30 or 300. Push the break or interrupt button slowly a few times. If ‘‘login:’ doesn’t
appear, call for help.
— UNIX may be broken (call ext. to check on that).

Type your userid, followed by “‘return’’. Your useridis —
— If each letter appears twice, find the switch labeled ‘‘full/half duplex’’ and set it to
“full™,
— If the computer typed back your userid in upper case, find the ‘‘all caps’ switch or
“shift lock” and turn it off. Then dial in again.

Normally UNIX says ‘‘Password:”” and you should enter your password; pnntmg will be turned

off while you do.
If you misspell it, UNIX will say ‘“Login incorrect. login:’’ and you can then retype your
userid and password correctly.

UNIX will say “‘$”*. You have successfully logged in.

A-2

Commands. When UNIX has typed ‘‘$” you can type commands, one per line. For example,
you can type ‘‘date’’ to find out what day and time it is, or ““who”’ to find out who is logged on.
Every command must end with a ‘“‘return’’. After typing a command, wait for the next *$” to
see what happens. For example, your terminal paper might look like this (what the computer
typed is in italics):
login: myid
Password: <you can’t see it>
$ date
Thu Jan 15 10:58:21 EST 1979
$
There are a great many other commands you can type (see the guides below) and in particular
the learn command can help you learn some features of UNIX.
- If you make a mistake typing: the character # will erase the previous character, so that
typing
dax#te
is the same as typing
date
and the character @ will erase the entire line; typing
XXXxx@
date
is the same as typing ‘‘date’’. UNIX supplies the carriage return after the @.
— You must hit return if you expect the computer to notice what you typed; otherwise it

will wait patiently and silently for you to do so. When in doubt, type return and see what .

happens.
— If you make a typing error and don’t correct it with # or @ before hitting return, the
computer will typically say

datr: not found
where ‘‘datr’’ is the erroneous input line.
— Other messages that may arise from mistyping include ‘‘cannot execute’’ or ‘“No match’’
or just ““?”’. The cure is almost always to retype the offending line correctly.

Terminology. Everything stored on the computer is saved in files. A file might contain, for
example, a memo or a chapter of a book or a letter. Every file has a name, which is used
whenever you want to refer to it. Sample names might be ‘‘chap3” or “memo2”. The files
are grouped into directories; each directory contains the names of several files. All users have
directories containing their own files.

Logging out. Just hang up. On a terminal with a data set, push the ‘‘talk button. On other
terminals hang up the handset. Turn the terminal power off.

Guides. You should have copies of UNIX For Beginners and A Tutorial Introduction to the UNIX
Text Editor.

