"‘:*r' UNPL 1406
M H @ Bell Laboratories Cover Sheet for Technical Memorandum

The informarnon conained herein is Jor the use of emplovees of Bell Laboratories and 1s not for publicaton (see GEI 13.9-3)

-

Title: cq — A Program for Testing C Compilers : Date: 1979 May 14

Other Keywords: C T™: 79-2524.3
Software Testing

Author(s) Location Extension Charging Case: 70107-6
F. T. Grampp MH 2C-253 3910 Filing Case: 40125-3

ABSTRACT

¢q is a C program that performs a coarse check on the quality of a C compiler by
comparing the behavior of the compiler to that which is advertised in the C Refer-
ence Manual. It is designed to run on almost any two's complement machine, and
assumes no support from an underlying operating system, except for the availability
of a printffunction. This memorandum describes cq from a designer’s point of view.
Specificaily, it is not a users’ manual — that is an integral part of cq.

—

~)

Pages Text: 7 Other: 0 Total: 7

No. Figures: 0 No. Tables: 0 No. Refs.: 3

E-1932-U (3-76) SEE REVERSE SIDE FOR DISTRIBUTION LIST

B2LL TZLEPHONZ LABCRATORIZS, INC.

COMPLETZ MEMORINDOM T0
CCEBRESFCNDENCE PILEZS

OFFICIAL FILE COPY
PLIS CNE CCPY PCH

2iCE 4ADDITIONAL PILING

CASE BEFERENCED

DATE PILE COPI
(rcam £-1328)

10 REFERINCE COPIES

A8AZY,081
+BABTCN,N E
¢BEYER,DONALD W

3BOWN,F STANLEY

PEASER,A G
+FREZMAN, 2 DON
¢ JCHNSON,STERHEN C .
+XASPER,F J
+ KZENIGHAN, BRIAN ¢
¢ LESK,MICHAZL 2
*1GNEON,THOMAS B
+MARTELICTTC, N A
+MAST,C &

¥CIL20T,M DOUGLAS
¢MITIZ,3CEERT W

MORGAN,SANMUEL P
¢PRIZVE,GARTON G
+3EI528,JOHN ?
-+8IJDLE,GUY G
+3ITCEIE,D M
+B0SLER, LAWRENCE
¢8CYEGNC,SELEN D
+80WLAND,BEUCZ B
+SCANLON,J ¥
*S2THI, aAV1

TEBRY,MILTCK E
+0SAS,ALAN M
+YACC3BLLIS, BOBRRT B

28 NAMES

COVER SHEET ONLY TO

COBBESPONDENCE ?ILES
4 COPIZS PLUS ONE

COPY FOR ZACH FILING

CiSE

AAG2SEN,JCuN
ACKIZNAN,3 T
AGAGWALA, FRAMITA
A¥O0,ALFBED V .
4HBENS ,BAINER B
ALCaZ)Y,C
ALMQUIST,R 2
AMSIER,S J
ANDEBSCN, KATHRIN J

+ NAMED BY AUTHOB

> CITED AS FZPERENCE

CCVER SHREZ? ONLI 70

AdDERSON,MILTCN M
APPELOADM MATTHEN 4
ABMSTRBONG,D B
ABRNDT,DENNIS L

A BNOLD,GEORGE ¥
4BNCLD,JAMES ¢
ARNOLD, PBILLIS A
AENCLD, TRCMAS P
8AGGA,YUDEVEER S
B4ILY, DAVID E
BAIN, WILLIAM LAMAR,JR
BALLANCZ,BOBERT 4
BALLABD,2 D,JR
84BCLAY,DAVID £
BABNHARDT,KABL B
BAROPSKY,LLLEK
SABON,ROBERT V
34SZIL,RICIARE J
BAUER,3ARBARA T
BADZR,8 C
BAOZR,BELEN A
EAUZR,R0LYGAKG ?
BEAUMONT, LELAND R
BEBLO,RILLIAM
BECKER,BICHARD 2
BECKX21T,d T
S8ECKNER,MARK
BEGLEY, ALOYSIUS A
BEIGHLEY,LZITH A
BENISCH,JEAN
BENNETZ,RATNORD ¥
BENNETT,RILLIAN C
3EBGLAND,G D
BEBNSTEIN,DANIELLE B
SZANSTEIN,L
BERRIMAN,E D
BEYER,JBAN-DAVID
BEYLER,ERIC
BICKPORD, NBIL B
BILOWOS,R M

<BIR®N,IBMA B

BISHOP,J DANIZL
SLANCHARD,JOETTE D
sLaziem,s o
SLINN,J C
B8LCSSER, PATRICK &
BLIZ,James L
SLUMTE, TBOMAS P
BLOM,NARION
BCDEN,F J
3CEdAM,RINM B
BOGART, THOMAS G
30I7I2,RICHARD B
3CLSRY,MCEBIS I
SCBDZLON, ZUGENE P
BOBISON,ELLEN A
SOULIN,D M
BCUSNE, STERYEN 2
BOWYER,L BAY
30ICE, ¥ M
SOYZR,2HILLIS J

< BEQUESTED BY READESR

DISTRIBUIION
(BEFER GE1 13,9-3)

COVER SH2ET ONLY TO

BOYLE,GERALD C
BBADLZY,M HELEN
BRINSKI,EDWIN ¥
BBESLER,RENEE A
BRIGES,GILORIA 4
BEOZR,H W
BBONZO, JOSZPE &
BEOOKS ,CATHZRINE AMN
380SS,JREPREY D
BECVMAN, ZINNA
BROWN,ELLINGTON L
BROWN, ¥ B
BOLPER,s ?
BUBG2SS,JCHA T,J8
BURG,P M
BUENETTE, ¥ &
BOROPP, STEVEN J
BUBRORS, TEOMAS A
BUSCH,XENMETH J
SUTLETT, DARRELL L
BYZRLEZ,R §
BYBNZ,2DGARD 2
CAMPBELL,JERRY H
CANADAY,BUDD 8
CANNON,LATHE ¥
CARB,RICHARD &
CARTZR,DONALD H
CASPERS, 8AkBAAA E
CASTEBLLANO, MARY ARN
CAVINESS,JOBN D
cEaMaAK,I A
CHAI,D T
CHAMBEES, 5 C
CHAMBERS,J o
CRARZY,? ¥
CHANG,JO-MEX
CHAPPELL,S G
CBENG, ¥
CEEN,STRPEEN
CHUEZRBY,LORINDA &
CHILDS,CABOLYN
CHIN, KATELZEN 2
CHL, M ¢
CHODROW ,M ¥
CHCU, PAO~10 2
CHRISTENSEN,S W
CHRIST,C W,JB
CICHINSKI,STEVEN
CIEBMINSKI,DEBRA I
CLARK,CONSTANCE 2
CLAEK,DAVID L
1ARE,2DML i
CLATTON,D ?
CLINE,LAUBEL M 1
COB2ZN,R0BERT M
COCHBAN, ANITA J
CCFPNAN, GAMES 2
COBEN, bALVEY
COHEN, EICHARD i
COHOON,JAMES P
CCL4BRARO,CHRISTINE 4

COVIR SHEET ONLY TO

<COLZ,100IS .M
COLEZ,MARILIN ©
COLLICOTT,R B
COLLINS,J P
CONKLIN,DANIEL L
CONNEBS,20NALD B
COOX,DIARL
ok ,JOL M
COOK, T J
COORER,ARTHUR B
COPP,DAVID H
COTTRELL,JENNIZ L
CRiOVIA,Z ¥
CRAGUN,DONALD §
CRISTCPOR,ZUGENE
CRUPI,JOSEPH A
CSENCSI?S,BRENDA M
CUHT,THOMAS 2
DAVISON,JOSEPH W
DAY1S,D 2
DAVIS,R oRZ2N
bE 22210,% J
o2 GRAAY,D 2
OE TBEYILLE,JOHN D
DEAN, JEPPREY S
DENNY ,MICHAZL S
DENSMORE, SUSAN
bmTon,R T
CESMORD,JCHF FATRICK
DEVIIN, SUSAN J
DI PIZIRO,R S
DIB,GILBERT
QIBSBL,MICHARL 2
CIMMICK.JAMES ©
DINEEN, THOMAS J
DOBDLINZ,BARBARA ANK
DCLATOW SKI, VIRGINIA M
DOLOTTA,T A
COMANGOR,JAMES C,JR
DCMB RO SXI,? J
DOWDEN, DOUSLAS €
JOGDEN, IRIS S
DRAKE,LILLIAN
bBEIZLER,B & .

. DBOSEIKIS, PREDERICK C
D°ANDREL,LOUISE A
DOPrY,? P
O0GGEZR,DONALD D
DUMAIS, VAL2RIZ
DUNCANSON,2CBERT L
DWYER,T J
DIEE ,MARY 2
EOELSON,DAVID
EDNUNDS,T W
ZICBOSN ,KEORT H
ZISZLE,BONALD €
ZITELBACH,DAVID L
ZLLIS,DAvID J
ELL,r C
EPLEY,308ERT ¥
ZRICXSON, 30BERT L

(NAMES JITEOUT PREFIZX

#3232 SZLZCTED USING TEE AUTECR"S SUBJ2CT OR OBGANIZATICNAs SPECIFICAITION 1S GIVEN BELOW)

MERCURY SPZCZ!ICI‘I'ICN.....-....-..o.---...--u-o-..-.-n.........-...........-.......o...-......n....-......-...-...............-

CCMPLETZ MENC 10:
127-C8H 252-DPH

COVEIZ SBEET ToO:

2524

QOP2DE = CCMRUTER FRCGAAM L2BUGGING, MEZASUREMENT AND TZSTING
CCPaSE = CCMRUTIE SOFTWARE SUALITY

REIN
4

T™M+79+2520~3

COVER SEEET OKLY TO

2SCOLAR,CARLCS
ESPCSITO, VINCERT L
ESSERMAN, ALAN B
ESTYANDER, B A
BVANS,J G
PABISCH,M P
FABEICIUS,WAYNE N
PAIRCHILD,DAVID L
FAULXNER ,ROGER A
F2AY,MARY B
FEOER,J
FELLIN,JEFFREY X
PEBEER,NANCY L
FILDES ,NBAL B
PINK, BERNICE 3
FISCIER, HERBERT B
PISCRER,MICRAZL T
PISHER,EDWARD R
PISHMAN, DANIZL H
FLANDRENA, R
PIZISCHER, H T
PLEISLESER, BATMGND €
FLCRIN, DONALD H
FCNG, K T
FCRINEY,V J
POUGHT,9 T
PCONICUKIDIS, A
FOWLER,BRUCE 2
FOWER,C F
FOVLER,GLENN D
FCVLER,H EOGEME
FOX,PHYLLIS)
ror,d ¢

FRANK, AMALIEZ J
FREEMAN,X G

P REEMAN, 4ABTIN
FREMON,P C
FBOST,H BONNEBLL
FBUCHIMAN, BARRY
GABDE,JCEN D
GARRI SCN,GARY A
GARVIN,JANES 8
GATES .G W
SAWRON, L J
GaY,FRANCIS A
GEAEBY M J
GEEES, T J,J2
GEORGEN,MICHAEL &
GEPNER,JAMES P
GEYLING,F 1
GIB3,KINNETH 8
GIBSCN,J
SILKEY,TECMAS J
SILLF J
GIMEEL,J F
GITHENS,J A
SITHINS,JAY
GLASSER, ALAN I
SIlTK,F G
GOGOEN, N ¥
GOLABEX,BTTE T

306 TeTAL

[, SeS

T

C

L~

TC S2T 4 CCMPLETE CCPY:

aC CCERESPONDENCE FIIES

H40 5C101

PLZASE SEND 4 CoMPLET®

l. 32 SUBZ YOUR CCRSECT ADDRESS IS GIVEN ON THE GTHER SIDE.
2. POLD THIS SHEET IN HAL? WITE THIS SIDE 20T aND STAPLE.

3. CIBCLZ THE AZDRSSS AT 21GHT.
4. INDICATE VHETHER MICEC®ICHE OF PAPER I3 DBSIRED.

JSZ NO ENVELCPE,

MICBCFICHE Ccey

T¥aTye232u-3
ICTAL PAGES 7

() FAPER coPY

TO TzE AD0EBSS SHOWN ON TYE OTE®R SIDZ.

-~

Bell Laboratories

,

subject: ¢q — A Program for Testing C Compilers date: 1979 May 14

Case: 70107-6
File: 40125-3 from: F. T. Grampp
MH 2524

2C-253 x3910

™: 79-2524-3

ABSTRACT

cq is a C program that performs a coarse check on the quality of a C compiler by
comparing the behavior of the compiler to that which is advertised in the C Refer-
ence Manual. It is designed to run on almost any two's complement machine, and
assumes no support from an underlying operating system, except for the availability
of a printf function. This memorandum describes cq from a designer’s point of view.
Specifically, it is not a users’ manual — that is an integral part of cq.

MEMORANDUM FOR FILE

The C programming language was originally developed for use in conjunction with the UNIXTM
operating system. For a number of reasons, all of which can be summed up by saying that the
language is both useful and highly portable, C has proliferated widely and rapidly both inside
and outside Bell Labs. In the Bell System, it is the language in which most programs are writ-
ten for UNIX systems (which now number in the hundreds) and it is available and widely used
in many other environments, including Honeywell and IBM systems, ESS 3B processors, and a
number of mini- and microcomputer applications.

The compilers we are presently using are, for the most part, either that which was written by
Dennis Ritchie for the DEC PDP-11, or various implementations of Steve Johnson's Portable
C Compiler. Also, we are aware of several C compilers that are being developed outside of the
Bell System, and it is only a matter of time before these compilers start showing up in connec-
tion with products purchased from outside vendors.

It was fairly obvious that some way was needed to check the quality of the C compilers we use,
both to guard against the propagation of unsuspected errors via new releases of our own com-
pilers, and against substandard products being introduced from outside. It was felt that the
latter possibility was particularly likely, if for no other reason than that such products would be
relatively new, and hence not thoroughly shaken out.

Accordingly, it was decided that a program, cq, would be written to test C compilers. This pro-
gram would be compiled and executed, and the results of execution would then be checked to
see whether they were as expected. Failure of a compiler to successfully compile the program
would be considered an error. During the course of execution, messages pertaining to devia-
tion from expected behavior or to certain peculiarities of implementation would be published
for the enlightenment of the user.

S A e it s e v Mo et el LwReR A e s fo R S memam i m s e ema e e tames o i s teme e - . em o

-2.

Centain characteristics of cq were abundantly clear very early in the design process:

1. Cis a programming language. Although its development and the development of :ne

UNIX operating system were closely intertwined, and people tend to associate one with the
other, C and UNIX are quite independent. Provided that a compiler exists, one.can write
C programs to run .under UNIX, or some other operating system, or for that matter, with
no operating system at all. It follows from this that any test package for a C compiler
would have to be as independent as possible from the target machine, the underlying

operating system, and the implementation mechanics of a particular C environment. In

particular, most assumptions about things like word size, all UNIX system calls, the use of

library functions, and programming "tricks” based on things like the loading order of object
modules or the layout of a.our files were to be strictly verboren.

. C is currently being used to program microcomputers, and it is reasonable to expect this

use to continue and to become more prevalent. The storage capacity of some of these
machines is tiny, even when compared with a “minicomputer” like a PDP 11/70, yet provi-
sion had to be made for the tests to be run in such an environment. This would require a
high degree of modularity in cq, so that the package could be taken apart and run in pieces
on small machines. Consideration of possibly limited storage facilities and software support
in the micro environment also supported previous feelings about dependence on operating
system and library facilities.

. Several C compilers are either available from, or are being written by sources outside of

the Bell System. It was felt that a clean set of compiler tests would be extremely useful in
cases where outside vendors wanted to sell their compilers to Bell System users. If the
tests were to be used as a basis for the rejection of flaky compilers, it was essential that the
tests be based only on information that was easily available to the general public and not on
proprietary information. For this reason, the tests were based only on information con-
tained in the book by Kernighan and Ritchie,! which is readily available to anyone through
any bookstore. This approach has the disadvantage that it is difficult to respond rapidly to
new C features developed at Bell Labs; the disadvantage, however, is outweighed by the
fact that an outside vendor cannot use "lack of private information" as an excuse for a poor
product.

. It is expected that when the tests are needed, they will be needed quickly, probably by peo-

ple who haven't used them previously and who may not have immediate or convenient
access to someone who is familiar with them. Hence, the package must contain sufficient
documentation for compiling and running, for "elective surgery” should this prove neces-
sary, and for the interpretation of results.

It was also obvious that there were certain fundamental limitations that could not be circum-
vented and would have to be lived with:

1. For several reasons, none of which will be covered in detail here.” it is simply not possible

to devise a set of tests to show the absence of bugs in a C compiler. Problems are going to
slip by undetected, and if particularly troublesome cases arise in the future, it may be
necessary to add to the tests to handle these cases. (One should be very careful about
using words like "verification" and "correctness” in connection with cq, especially if there is
any likelihood that such words might be interpreted in a formal sense.)

- In addition to compiling correct programs. any compiler has an equally important job: that

of rejecting incorrect programs. Compilers that ignore errors. or abort, or publish cryptic
diagnostics, are unlovely beasts indeed, and should not be offered to the public as program-
ming tools. It is unclear how to test that error detection is being handled properly, if, in
fact. it is possible to make such a test at all. The output of C compilers is not defined for
erroneous programs, other than that they should say "I didn't like that.* in some fashion.

1.

2

Kernighan, B. W.. and Ritchie. D. M.. The C Programmmsg Language. Prentice-Hall. 1978.
See Hoare, C.A.R.. and Allison. D.CS. Incomputabiiry. Computing Surveys, 1972 September. P169.

- ~ -3-

The number and content of diagnostics, and the format and destination thereof is
unspecified, as is communication, if any, with the operating system, and with the control.
logic that determines whether processing will continue after an error has been encountered.
Thus, while it may be possible to systematically test the error handling capabilities of a par-
ticular compiler running under a particular operating system, the best that can be done in
the general case is to collect a body of incorrect programs and have a person feed them
into the compiler, one at a time, and afterwards make a subjective evaluation of the suita-

AN bility of the compiler’s defenses. Since such a procedure is entirely unsatisfactory. and
there appear to be no alternatives, this important aspect of compiler testing had to be
ignored in the design of cq.

Program structure

The package consists of a number of files (currently 26) in a single UNIX directory. The files
contain:

e Documentation
A driver module
Some definitions
A single UNIX-specific module
A flock of test modules

The files are named so that they will be accessed in that order when they are referenced by
UNIX commands. For example, pr * will print the files, in order of importance to a user, and
in a form suitable for binding into an 8.5 x 11 inch operating manual. Alternatively, if the tests
are to be run "in place” the user need only type in "cc *.c; a.out" or a suitable variant.

Documentation

A file called README contains general information about the package. It describes the overall
structure of the program, and tells how to compile and run it, and what to do if modules fail 10
compile or execute. Finally, a detailed (and hopefully helpful) explanation is given for each of
the error messages that can be produced by cq.

Documentation that is specific to individual modules appears in those modules.
The driver module

The file crm.c is the main() function for the package. Its purpose is to call the test modules in
sequence, and to provide communication among modules.

The module consists of three sections. The first contains a couple of pages of commentary
describing in detail how the program is put together, how test modules are called, and how to
take the package apart or add to it. The second section contains a list of ail test modules to be
/"‘:} called and a structure defining the environment in which the modules are to operate. Finally,
o the half-dozen or so lines at the end contain the program logic, which, as expected, calls the
moduies in the list, accumulates return code information, and announces success or failure of
the tests.

The interface between the driver module and the test modules has been designed to facilitate
adding or deleting test modules. The list referred to above is actually a sequence of external
function definitions. The driver module calls each test module in sequence by sequencing over
the list with a _for loop containing the funny-looking statement:

d0.rre = (*sec(j]) (pd0):

which effectively says "call the jth module in the list, passing it a pointer to a description of its
operating environment, and then stuff its return code in a place called "d0.rrc”. This is the only

-t = a. A e e % e e, e S E———— - S te ‘e mp &+ i 4P ar I e R e

.4.

really cryptic line of code in the entire package, and its justification is that it makes addition or ~J’
removal of a2 module as simple as the insertion or removal of its name in a list. ~

_
Definitions. d

s

-
The driver module contains a structure that defines the working environment of the-package:
sizes of primitive data types, precision of the floating point hardware, flags dictating the verbos-
ity of the output, and so on. A pointer to this structure is passed to0 each module when the
module is called. Since the structure is used by most of the modules in the package, it is
defined in a file called "defs" which is then #included in each module that uses it. Should these
definitions need to be changed, they can be changed in only one place. ’

UNIX-specific code

In any testing procedure, it is necessary to specify what is to be done, and to record certain par-
ticulars about the test, such as when and whete the test was conducted. The easiest way to
specify options is to include them in the command line that invokes the program. Similarly,
the easiest way to record the time and date of a test is to have the program itself retrieve and
print this information. Unfortunately, the facilities to do things like this are not part of the C
language, but are supplied by the underlying operating system. While most operating systems
supply such facilities, their use will probably not be the same from one system to the next;
hence a program that depends on them is non-portable.

Since these features are very convenient, and since it was anticipated that cq would be heavily
used under UNIX or in a UNIX-like environment, a single, non-portable module, "options.c”
was provided to interpret options on a command line, and to print the time, date and system
identification along with the rest of the output from cq. This routine is called once from the
. main() routine. The line that calls it can be removed in a non-UNIX environment, or if the
routine causes trouble for any reason.

Test modules

Actual testing is done by a collection of test modules, all of which are called by crm.c. The
organization of the modules is modeled after that of the C Reference Manual,’ and the
modules’ names are suggestive of the corresponding manual sections. Thus module s22.c
corresponds to section 2.2 in the manual. The correspondence is not isomorphic. There are
some numbered sections of the manual for which there exist no corresponding modules (e.g.,
section 3, which describes the syntax notation used in the manual), and there are several cases
in which tests based on a group of small, closely related manual sections have been combined
into a single code module. Nevertheless, finding the text in the manual that corresponds t0 a
given test, or vice versa, is quite painless.)

When a module is invoked, it is passed a pointer to a structure that describes the environment
in which the module is to operate. The structure contains flags that dictate the verbosity of the
module, descriptions of the underlying machine hardware, and an eight-character field into
which the module writes its name for the benefit of the calling program. When a module exits,
it returns an inr which is either zero if all went well, or the bitwise or of one or more flags indi-
cating that something is not as advertised.

Limiting the number of distinct errors that can be passed back from a module to the number of
bits that can be contained in an inr may at first seem somewhat restrictive. It turns out,
though. that the possibility of a module returning more than four or five distinct error messages
is usually an indication either that the module is trying to do too much in one place and ought
to be broken into smaller pieces, or that too much detail is being returned to the calling pro-
gram. As an example of the latter case, one of the modules (s714.c), that tests, exhaustively,
all possible combinations of assignment operators and primitive data types. If one or more of
these tests fail, the module simply reports failure to the calling program. More extensive detail
can be obtained by looking at local return codes printed by the module itself.

3. dppendix 4 of Kernighan and Ritchie. op. cit.

3

-—

-5-

Error conditions are communicated to the user by means of terse messages that display the
name of the module in which the error was detected and a number corresponding to the error.
This is an ancient and ugly technique, and [have always regarded as obnoxious those programs
that use it. In this case, it was unavoidable for two reasons. First. there is a big difference
between being able to discover that something is wrong, and being able to devise an effective
procedure capable of correctly diagnosing the causes for an anomaly. The former task is easy:
the latter, impossible. In fact, the only reasonable strategy is to point the user of the package at
the place where a problem surfaced. so that he can then do whatever sleuthing is appropriate.
and the numbered messages do this quite well. Second, even if it were possible to construct a
meaningful set of detailed diagnostics. these diagnostics would have to be stored somewhere.
Storing them in the program is at odds with the goal of keeping modules small enough so that
they can be run on tiny machines, while storing them externally requires that the program be
dependent on some specific file system.

Most of the modules are fairly small. The two exceptions are s714.c and s7813.c which test,
respectively, assignment and bitwise logical operators. These modules were for the most part
generated by fairly simple-minded SNOBOL programs, and perform rather exhaustive tests.
Like most machine generated programs, they are not particularly pretty to look at. although the
commentary at the beginning of each eliminates the need for more than a quick peek.

The characteristic of the code in the test modules which is perhaps the most striking at first
glance is that the behavior of the various types of C starements is explicitly checked in only a
very few instances, and that the most attention is given to whether the meaning of data types,
constants, conversions and operators is being interpreted properly. Making statements work
right is easy — perhaps the easiest part of the compiler writer’s job, whereas the other tasks are
extremely difficult. Hence the amount of attention paid to the fatter aspects is justified on
account of their enormous potential for causing trouble. Moreover, if it were the case that
something were seriously wrong with the way that statements were handled, it would be
extremely unlikely that a program like cq with several thousand lines of code (or for that
matter, most other programs) would run at all. Finally, in a few pathological cases, the C
Reference Manual’s authors have wisely opted for clarity rather than precision. and their
description is not exact. For example,

for({expression_l; expression_2: expression_3) statement
is almost, but not quite equivalent to:

expression_1;

while(expression_2){
statement
expression_3;

but the fact that this description is inexact does not diminish its utility for most purposes. The
fuzzyness of the language description at this level, however, precludes the construction of finer
tests.

Tests of data objects, operators and conversions were constructed following the dictates of com-
mon sense. Specific examples that were given in the Manual were copied bodily. Where it was
reasonable to do exhaustive testing, exhaustive testing was done. In cases where it-was imprac-
tical to test something exhaustively, test conditions most likely to produce anomalies were used.
Programs that were known to have caused problems in the past were also inciuded.

-6-

It was recognized rather early that some minor (and tolerable) variations in the behavior of cq /‘J

were 10 be expected, both because of the informal specification of the language, and also
because of the hardware differences in the machines on which cq might be run. While s
variations could not be considered errors, news of them would provide important information
about both the subject compiler and the underlying machine. Accordingly, in addition to
reporting errors, cq provides some commentary on the following:

1. The size and alignment of primitive data types.
2. The precision of floating point operations.

3. Whether or not sign extension occurs when chars or bit fields are promoted to objects of
larger size.

4. The number of registers actually available for C's "register” storage class.

(Given the constraints under which cq must operate, getting the information for the last item
turns out to be a fairly entertaining programming puzzle, and the reader is encouraged to try it.
A solution can be had by looking in section s81 of cq.)

User Experience

The fact that tests may show the presence of bugs, but cannot show their absence makes it
extremely difficult to evaluate a program like cq. The situation is further complicated by the
fact that testing thus far has been limited to two compilers: Dennis Ritchie’s cc compiler, and
Steve Johnson's pcc (portable) compiler. Both of these compilers were well-worn in the sense
that they had been used extensively for production purposes and thus had been more or less
thoroughly shaken out by the time that cq was first run. (In the case of some implementations
of pcc, the machine-dependent sections were relatively new.)

cq was tried on the following machine-compiler combinations:

DEC PDP 11/45 = cc
DEC PDP 11/45 — pec
DEC PDP 11/70 = cc
DEC PDP 11/70 — pec
DEC VAX 11/780 — pcc
Honeywell 6000 — pcc
IBM System/370 — pce
Interdata 8/32 — pcc

with the following results:
1. No problems were experienced that could be attributed to nonportability of cq.

2. In no case did cq run correctly on the first try, in that at least one bug was found in each
machine-compiler combination.

An impressive variety of bugs was uncovered. These included incorrect code generation,
absence of templates for compiling various operator-operand combinations. wrong operator
precedence, a couple of cases in which the target compilers aborted. and a floating-point
hardware problem.

(73]

Thus, even in friendly and familiar surroundings, cq provided a simple way to find some bugs
that could have been uncovered much more painfully by future users. It will be interesting to
see what happens when new compilers appear on the scene.

~

Acknowledgement

In the course of designing and writing cq, I received extensive help in the form of suggestions;
clarifications, encouragement, inspiration and sometimes even condolences from Lee Benoy,
Steve Jonnson, Brian Kernighan. Andy Koenig, Mike Lesk, Joe Maranzano. Dennis Ritchie.
Larry Rosler and Ravi Sethi: To list all of their contributions here would take several pages.
Let me simply say that [am very grateful.

4 4f sty

[MTH-2524-FTG F. T. Grampp

