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MEMORANDUM FOR FILE

1. INTRODUCTION

Much of the software used by the Bell
System is written in the C language. A
Center 362 task force® concerned with the
development of processors for telephone
company application has devised a set of
seven benchmark programs to evaluate C
language processor performance. These
benchmarks are intended to imitate the style
of C language use in Bell System applications
and by the UNIXt operating -system.
Characteristic of these applications is a fair
degree of emphasis on string and C structure
manipulation and very sparse appearance of
significant arithmetic computation; many
applications do no floating-point computation
at all.

This memorandum compares the execu-
tion speeds and program sizes obtained by
running the seven benchmark programs on a
variety of machines spanning the range from
microprocessors to some of the largest main-
frames. The following machines were meas-
ured:

e Amdahl: V7 (IH Computer Center)

e BTL: 3B-20 (with memory cache and
I1S25 instruction set), MAC 8

e Data General (DG): Eclipse M600

®* Task force membership: A. D. Berenbaum, C. W.
HofTner, P. Lutz. R. W, Mitze, D. A. Poplawski and
E. P. Schan Jr..

t UNIX is a iredemark of ‘lell Telephone
Laboratories

o Digital Equipment Corporation (DEC):
VAX 11/780, PDP 11/70, PDP 11/45,
PDP 11/34, PDP 11/23, LSI 11.
(MOS memory for all models)

o Honeyweil: 6080 (MH Computer

Center)

o IBM: 370/168, 3033 (IH Compuier
Center)

e INTEL: 8086 Single Board Computer
(SBC)

o Interdata: 8/32
e Tandem: Tandem 16
e UNIVAC: 1100/81

The comparisons necessarily include the
compilers for the various machines which in
some cases are brand new and in others are
well seasoned and honed. Sections of this
memorandum deal with the effects of com-
piler options, alternate compilers. clock
speed, caches, and the addition of memory
management.

The work to be described comprises a
first step in measurements currently under-
way on operating systems in conjunction
with CPU’s.

1.1 The Benchmarks

The code for the seven benchmarks is
given in Appendix A. In all but the first
case (Ackerman's function), the code was
extracted from an existing program. The
original programs all have different authors.
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b2

b3

b4

b5

b6

Ackerman’s function: computes the
doubly recursive function ack(3,8)
once. Since negligible amounts of
computation are involved, this bench-
mark tends to stress the subroutine call
mechanism. ack(3,8) issues a complex
pattern of calls to itself repeatedly
growing and shrinking the stack by
large amounts; the maximum depth of
recursion-is 2044,

Word sort: accepts a list of English
words and counts the number of times
each word occurs by sorting the words
into a binary tree. Lots of subroutine
calls as well as pointer and string mani-
pulation are involved. To avoid disk
access, the input array of 1000 words is
furnished as part of the program. The
sorting of this array is repeated 30

times.

Quicksort: lexicographically sorts a list
of seven English words using the quick-
sort algorithm. The code stresses the
ability to call subroutines, access the
stack, and to efficiently handle strings
using character pointers. The seven
word sort is repeated 30,000 times.

Terminal handier: examines and
translates ASCII characters. The code
for this benchmark was extracted from
the SPS operating system of the MAC
8 PLAID system. This code is also
somewhat similar to terminal handling
code in UNIX. The translation of a
sequence of characters is repeated

/30,000 times.
Symbol table insert: performs string’

and list manipulation to look up a sym-
bol in a hashed symbol table. This
benchmark was derived from the
MAC-8 assembler. The symbol lookup

operation is repeated 30,000 times.

Buffer release: performs list manipula-
tion and other operations to release an
operating system buffer. The code for
this benchmark was extracted from
the UNIX operating system. The
benchmark emphasizes the ability to
manipulate C language structures such
as occurs with high frequency in
UNIX. The buffer release operation is
repeated 100,000 times.

-2.

b7 Statistics: computes the mean and first
moment of an array of ten integers
using integer arithmetic (16 bits per-
missible). This benchmark was
derived from a program to compute
disk seek statistics. This is the only
benchmark with even modest arith-
metic activity. The first moment com-
putation involves a multiply operation
per array element as well as a divide
operation at the end of the computa-
tion. The computation is repeated
60,000 times. Despite the relative
leniency and simplicity of the computa-
tion, this benchmark executed notably
slowly on the low-end processors.

The following rules are observed by all of
the benchmarks.

e No operating system calls are made.
This involved removal of all [/0
activity from the programs segments

from which the benchmarks were con-

structed.

e No C library routines are referenced
(except for the subroutine call
save/restore mechanism). Any library
routines needed are included with the
benchmarks.

Prototypes of 53-b7 were used originally
by Berenbaum, Mollinelli, Pekarich and
VanOrnum in a cycle count comparison of
the MAC 8 with several commercial
microprocessors.! The prototypes were

revived and modified, and b7 and b2 were

added,when a need arose to evaluate alter-
nate instruction sets for a processor under
development in Center 362. The major
benchmark changes were the inclusion of
"null” subroutines to satisfy subroutine refer-
ences and the addition of sufficient repeti-
tions to yield easily measurable running
times.

The benchmarks were examined during
their development using a C compiler instru-
mented to furnish the static (each instruc-
tion in the program assumed to be executed
once) frequency of occurrence of primitive
operations yielded by C code. These fre-
quencies were compared to frequencies
obtained from code used in a number of
UNIX Operations Support (OSS) applica-
tions; approximately the same occurrences of
the most frequent primitives were found.
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The author made a number of minor
changes to 51-b7 to increase portability and
to enable them to run on all the machines in
question. None of the changes noticeably
affect execution time for the PDP 11/70 or
the VAX 11/780. The use of these bench-
marks represents a deliberate choice to use
existing tools as opposed to developing new
ones, some limitations of the benchmarks
and suggested areas for improvement are
given in Section S.

Ackerman’s function, because of its
unusual stack growth, proved to be the most
troublesome benchmark. For most of the
machines, large areas for stack growth were
reserved initially before running the bench-
mark. When running under UNIX, stack
allocation was left to the operating system.
UNIX allocates a modest amount of stack
space initially; stack growth beyond this ini-
tial allocation causes the operating system to
be invoked to furnish more stack space
which then remains with the program
thereafter. The effect of this operating sys-
tem intervention was verified to be negligi-
ble by creating a trial program that ran
ack (3,8) wwice in succession and observing
that the execution time (on the PDP 11/70
and VAX 11/780) was essentially twice that
of running ack (3,8) once.

1.2 Compilers

In general, the results in Sections 2 and 3
are for the best available compiler and also
reflect the use of code optimizers and space
saving compiler options where available.
The effects of alternate compilers and com-
piler options are explored in Section 4.

For the PDP 11 and LSI 11 machines,
the standard well-seasoned PDP 11 compiler,
written by D. M. Ritchie, was used. S. C.
Johnson has developed a portable C compiler
which has been used as the basis for most of
the other C. compilers that exist. For the
MAC 8 there exist "old" and "new" com-
pilers, based on the Ritchiec and Johnson
compilers, respectively. Since the new com-
piler is intended to replace the old one, it
was chosen for the comparisons. A new
VAX compiler version, incorporating several
refinements, became available towards the
end of this study and is the one that was
used. The IBM compiler on which resuits
are based is the one currently used with the
IH TSS system; alternate IBM compilers

were not examined.

The compiler and optimizer for the
revised (IS25) 3B instruction set became
operational just in time for 3B-20 results to
be included; this compiler is at a very early
evolutionary stage and is likely to be

improved.

1.3 How the Benchmarks Were Run

Where possible, the benchmarks were
run on "quiet” machines i.e., the benchmark
was the only program running at the time.
For the larger machines where this was not
possible (Honeywell, IBM and Amdahl
machines), the benchmarks were run during
a period of light machine use. In the latter
cases, each benchmark was run a number of
times to ascertain that there were only slight
deviations in execution time between runs
and the execution times were averaged.

The operating (or other supervisory) sys-
tems used are given below*

e IBM 370/168, IBM 3033 and Amdahl
V7: IBM TSS

e DEC VAX 11/780, DEC PDP 11 (all
models), Interdata, 8/32 and Univac
1100: UNIX

e DEC LSI 11: stand alone operating
system developed by T. J. Kowalski
(Dept. 3624)

e DG Eclipse M600: AOS
e Tandem 16: Guardian

e Inte] 8086 (without memory manage-
ment): BASIC 16 system, The Intel In
Circuit Emulator (ICE) system used to
emulate the 8086*

e BTL 3B-20: none
e BTL MAC 8: PLAID system

IBM TSS CPU accounting was used to
measure the IBM and Amdahl execution
times. For the runs using UNIX, the execu-
tion times are the user times as furnished by
the UNIX time command. (These are essen-
tially the same as overall elapsed time in a
quiet environment). A special very accurate
ad-hoc timing scheme, devised by R.
Fleisleber (Dept. 3622) . was used for the

t Operaling system “overhead” is normally small in 4
quiet environment and is neglected here. Strictly.
many of the measurements represent available CPU
resousce under the particular operating system used
According 1o Intel, the ICE system furnishes run
limes that are equal to 8086 run times in the
configuration used here.



Intel 8086 measurement. The 3B-20 times
were obtained from its real-time clock. The
remaining machines were timed using a
stopwatch and therefore subject to errors as
much as 5%. In view of measurement error,
speed differences of individual machine sam-
ples, and the general benchmark limitations
discussed in Section 5, the relative speeds
given in Section 2 should be taken as only
approximate.

2. Execution Speed Results

Relative execution speeds for the seven
benchmark programs are summarized in
Figs. 1 and 2 and in Table 1. The execution
speeds were obtained by normalizing each
benchmark execution time to the execution
time for the same benchmark on the PDP
11/70 and then inverting the result. The
actual execution times are given in Appendix
B. The results in both figures have been
sorted in terms of decreasing average execu-
tion speed for benchmarks 2-56.

CPU Average Range
Amdahl V7 7.6 .6.0-8.2
IBM 3033 6.7 57-13
IBM 370-168(3) 2.81 2.64 - 3.13
UNIVAC 1100/81 1.55 1.44 - 242
BTL 3B-20 (IS25, cache) 1.16 .63 -1.59
DEC VAX 11/780 1.13 1.03 - 1.25
DEC PDP 11/70 1.00 1.00 - 1.00
DG Eclipse M600 93 .56 - 1.76
DEC PDP 11/45 (cache) 713 J1- .80
Tandem 16 73 .63 -1.05
Honeywell 6080 .66 .56 - .90
Interdata 8/32 .62 S56-.79
DEC PDP 11/34 (cache) 49 41 - 54
Intel 8086 (8 mhz) 49 37- .57
DEC PDP 11/45 42 40- 49
Intel 8086 (5 mhz SBC)* 307 .228- 359
DEC PDP 11/34 296 .246 - .345
DEC PDP 11/23 281 209 - 321
BTL MAC 8 (3 mh2) 254 049 - 347
BTL MAC 8 (2 mh2) 169 .033- 232
DEC LSI 11 123 087- .128

Table 1

Normalized Speed Factors

Results for Iniel 8086 with memory management do
not differ significantly with Intel SBC times

Fig. 1 shows the execution speeds for the
individual benchmarks for  selected
machines. Each dot in Fig. 1 represents the
execution speed of a benchmark; seven dots
for each machine describe the execution
speeds of the seven benchmarks.
Insufficient memory on the available LSI 11
installation prevented the running of 57 and
b2; the five dots for this machine in Fig. 1
represent b3-b7. For the most part, the nor-
malized execution speeds for the different
benchmarks on a given machine did not
differ greatly. Many machines performed
relatively well on bl; very likely a reflection
of an efficient (compared to the PDP-11)
subroutine call mechanism for small
numbers of arguments and registers. A rela-
tively poor showing on 57 was also common
on the low-end machines. The most
dramatic instance of this occurs for the
MAC 8 which shows itself a factor of five
slower on this benchmark than it does on
the others. b7 requires multiply and divide
operations which are accomplished using
lengthy subroutines on the MAC 8. Chang-
ing these operations to addition and subtrac-
tion brought the MAC 8 execution speed for
b7 into line with its execution speed for the
other benchmarks. The other low-end
machines, the Intel 8086, PDP 11/34, PDP
11/23 and LSI 11, ran 17-30% slower on b7.
This is likely due to lack of appropriate CPU
features and heavy reliance on microcode for
the implementation of arithmetic multiply
and divide operations. Poor performance by
the Eclipse on 47 is attributed® to lack of a
sufficient number of registers.

Fig. 2 and Table 1 show the range of
speeds encountered; the high and low for
the seven benchmarks as well as the average
of b2-b6. bl (Ackerman’s function) was
omitted from the average because its atypical
nature. b7 was omitted because it contains
multiply and divide operations. Inclusion of
b7 would lower the Eclipse and 3B-20 aver-
ages about 8% and the Intel 8086, PDP
11/34, PDP 11/23 and LSI 11 averages 3-
5%.

2.1 Wait States and Clock Speed

A wait state is an extra machine clock
cycle added to a memory access operation to
give a slow memory system time to respond.

-

Personal communication by Guy Riddle of Dept.
9155 who wrote the compiler for this machine.

~
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When comparing microprocessor chips by
measuring computers based on them, it is
necessary to take into account the number of
wait states and the clock speed used in the
configurations that are measured. The
PLAID system for the MAC 8 uses zero
wait states and was measured operating at 2
megahertz. The Intel SBC used for measur-
ing the 8086 uses one wait state on memory
reads, two wait states on memory writes, and
operates at S megahertz. (Intel feels that the
memory choice for the SBC is a reasonable
compromise between memory cost and
overall speed.) Memory is available which
will permit operation of the 8086 chip using
zero wait states yielding an estimated
(approximate) 15% improvement in speed:
caution must be exercised in comparing with
the MAC 8 zero wait state result.

The Intel 8086 and MAC 8 measure-
ments were made at the highest clock speeds
for which configurations were readily acces-
sible. Versions of the Intel 8086 are avail-
able which will run at 8 megahertz and MAC
8 versions are available which will run at 3
megahertz. Memory is available for both of
these machines which will run at the higher
speeds without change in the number of wait
states required. Thus, speed should scale
with clock rate; this implies the availability
of Intel 8086 and MAC 8 configurations
capable of operating 1.6 and 1.5 times faster,
respectively, than the systems that were
measured. Fig. 2 (and Table 1) gives both
measured and projected higher clock rate
speeds for these machines as well as speeds
for some other machine variants to be
described®

- 2.2 Intel 8086 with Memory Management

Addition of memory management to
microprocessors can degrade execution speed
due to the requirement for additional wait
states. H. B. Mendell of Dept. 3356 has
developed a memory management unit for
the Intel 8086 which uses one wait state on
memory reads and writes (slightly less than
used by the Intel SBC). ‘This unit was fur-
nished with a 4.096 megahertz clock in the
instaliation that was measured. Execution

* The 8086 8 megaheriz projection is based on the 5
megahertz SBC result. Zero waits states would yield
a speed about 15% higher than that shown.
Memory that will operate at 8 megahertz with zero
wait states is currently expensive and would be
-+mpractical for most applications.

times for the seven benchmark programs.
scaled to reflect a 5 megahertz clock fre-
quency, averaged about 2% faster than those
obtained with the Intel SBC. (The measure-
ment was made using a stopwatch so that
small percent differences are not significant).

2.3 PDP 11/45 and PDP 11/34 with Add-On
Memory Caches

The PDP 11/45 and PDP 11/34 comput-
ers do not have memory caches as standard
equipment. A number of manufacturers.
however, market add-on caches for these
machines. The measured speed improve-
ment (run time without cache/run time with
cache) for a PDP 11/45 with a Fabritek
cache and for a PDP 11/34 with a Digital
Equipment Corporation cache are summar-
ized in Table 2.¥ The machines had MOS
memory.

Average Range
PDP 11/45 1.74  1.64-1.86
PDP 11/34  1.65 1.56 - 1.70

Table 2
Speed Improvement with
Add-on Caches

The PDP 11/34 measurements are for
the same machine with and without the
cache enabled. The PDP 11/45 measure-
ments are for two different PDP 11/45
machines, one with and one without cache:
the speed ratios are thus subject to speed
variation of the individual basic machines.
(The PDP 11/45 is prone to this).

These benchmarks exhibit unusually high
cache hit ratios: the improvements displayed
are thus higher than would be observed for
most code. The impact of caches is dis-
cussed further in Section 5.

3. PROGRAMSIZE

Program text and data sizes for the seven
benchmark programs are summarized in
Figs. 3-5 and Table 3. The sizes in bytes
have been normalized to the corresponding
PDP-11 sizes and are ordered in terms of
increasing average text size. (Non-
normalized program sizes are given in
mprovemen(s measured lor b/-b7 were

PDP 11/45: {1.64. 1.70, 1.81. 1.79, 1.76. 1.64. 1.86}
PDP 11/34: [1.56. 1.57. 1.70, 1.68. 1.70. 1.69, 1.64).
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(Text + Data)

Text Data
average range average range average range

DEC VAX 11/780 .84 70-95 144 .95-2.14 .96 .70-1.38
BTL 3B-20 (IS25) 97 84-1.04 1.4 1.00-2.00 1.07 .94-1.38
DEC PDP 11 1.00 - 1.00 - 1.00 -

DG Eclipse 1.03 .81-1.18  1.01 1.00-1.03 1.05 82-1.16
Intel 8086 1.06 .96-1.19 .99 .92-1.00 1.05 97-1.19
BTL MAC 8 . 111 .92-1.34 97 .75-1.07 1.08 .90-1.31
Tandem 16 1.16 97-1.29 1.03 .93-1.10 1.15 1.00-1.26
Interdata 8/32 1.82 1.54-2.26 147 92-2.29 1.74 1.50-2.26
IBM 370 2.16 1.85-2.67  3.57* 1.39-0 2.30 1.40-3.41
H6080 2.35 1.42-2.98
Univac 1100 3.40 2.81-3.99  3.18* . 1.44-00 3.18 1.47-4.14

Table 3

Normalized Benchmark Sizes

Appendix C). The sizes do not include
library routines nor do they include stack
growth (significant for 1) which occurs dur-
ing program execution. Where code optim-
izers are available, the sizes shown are for
the optimized code. The VAX code sizes,
except for b2, are for code generated using
the complier option which assumes address
offsets to be less than 32K in magnitude.
\The data array in b2 was too large for this
option to be used.)

For most of the machines, the text sizes
were taken as the text size of the ".o" file
produced by the compiler. Data sizes were
computed from the data sizes of the "a.out"
files by subtracting the data size of a null
program; the latter procedure was necessary
to include the size of uninitialized global
data areas.

Figs. 3 and 4 show the text and data
sizes, respectively, of the individual bench-
marks. Fig. 5 shows the range of sizes
encountered — the high, low and the aver-
age for text, data, and text plus data. The
Amdahl instruction set is identical to that of
the IBM machines so that the text and data

* Average without bl

sizes are the same. Only composite text plus
data sizes were obtainable for the Honeywell
6080.

The text sizes for the VAX, 3B-20,
PDP 11, Eclipse M600, Inte! 8086, MAC 8
and Tandem machines are fairly close and
significantly smaller than the text sizes for
the Interdata, IBM and Univac machines.
Data sizes for the MAC 8 and all 16 bit
machines are nearly the same and are much
smaller than the sizes for the larger word
size machines which require more space to
store C language integers and pointers. Some
types of address information which consti-
tute text on the other machines are treated
as data on the Univac and IBM machines.
As a result, the data sizes for this machine
are markedly higher. (b1, in fact, required
no data storage space at all on all but the
IBM and Univac machines, yielding a nor-
malized data size for b7 of infinity).}

t Fig 5 shows occasional instances in which averages
of 1ext plus data are either less than or greater than
both text and data averages. This is nof an error,
but rather a property of the calculation. (Intitively,
for certain benchmarks one or the other of the text
or data components predominates in the total size
thus nullifying the effect of the other component on
the text plus data average.)

-
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4. COMPILER EFFECTS
4.1 Alternate Compilers

The results in Sections 2 and 3 were
obtained using the standard (Ritchie) PDP-
11 compiler and the new MAC 8 portable
compilers. Results obtained with the port-
able PDP 11 compiler and with the older
MAC 8 compiler are summarized in Table 4.
The percentage numbers are the result of
comparing with corresponding figures for the
compilers used in Sections 2 and 3. For
relative speed, positive percent values indi-
cate faster execution. For program size,
positive percent values indicate larger size.
All results are for optimized code. Detailed
results are given in Appendix D.

Execution times and data sizes for the
portable PDP 11 compiler are very close to
those obtained with the standard compiler.
The text sizes averaged 11.3% larger. Exe-
cution times and text space for the new
MAC 8 compiler are nearly the same as
obtained with the oid version, with a small
improvement in average data size. (The new

Relative
Speed
avg/(range)

Port. PDP11 -1.2%
(-3.1-00%

Old MAC8 0%
(-4.0 - 3.9Y%

Table 4

compiler represents a considerable improve-
ment in terms of incorporating recent C
language changes and features.)

4.2 Peephole Optimizers

The PDP 11, VAX, Interdata, MAC 8
and 3B-20 compilers incorporate what are
referred to as "peephole” code optimizers.
These operate on the assembly language out-
put of the basic compiler to remove extrane-
ous register loads and jump sequences and to
perform miscellaneous local transformations,
usually idiosyncratic to the particular target
machine, which serve to reduce space and/or
running time requirements. None of the
optimizers affected the data space required
by any of the programs. The time and space
improvements introduced by the optimizers
are given in Tables 5 and 6, respectively,
expressed in percentages relative to the
non-optimized code. Negative entries indi-
cate that the optimized code actually ran
slower than the non-optimized code. The
VAX comparisons (except for 52) assume
the small address compiler option. The
MAC 8 and 3B-20 optimizers were not
investigated.

Relative Relative
Text Size Data Size
avg/(range) avg/(range)
+11.3% -1.2%
(5.3 - 34.9)% (-8.1 -0)%
-1% 4.3%

(-10.8-10.8)% (0 - 28.6)%

Portable PDP-11 and Old MAC 8
Compilers compared with Standard Versions



(Port)
VAX PDP11 PDP11 Inter.

bl 68% 4.5% 2% -4.5%
b2 39% 4.1% 0. 3%
b3 82% 6.1% 1.0% 6%
b4 83% 6.5% 3.5% 1.1%
bS 6.0% 6.7% L7% 1.1%
b6 59% 3.5% 9%  1.8%
b7 53% 2.8% -.2%

avg 63% 5.0% 1.4% -.1%

Table §
Speed Improvement By Optimization

(Port)
VAX PDP11 PDP11 Inter

bl  -28.6% -20.4% -3.3% -6.7%
b2 -10.1% -8.8% -4.0% -9.1%
b3 -13.8% -73% -24% -10.5%
b4 -148% -8.7% -4.7% -152%
bS  -17.1% -11.0% -49% -9.8%
b6 -23.0% -58% O -8.4%
b7 -14.0% -10.1% -41% -10.6%

avg -17.4% -10.3% -3.3% -10.1%

Table 6
Program Text Size Reduction
By Optimization

The PDP 11 execution speed results are
for a PDP 11/70.* The effect on execution
speed varies with the optimizer but, in gen-
eral, is modest; the best case, a 6.3% average
improvement, occurrs for the VAX 11/780.
For the Interdata, in two cases the optimized
code actually ran slightly slower than the
standard code. Optimization yields substan-
tially greater improvements in program size;
average text size reduction exceeds 10%
except for the portable PDP 11 compiler.
Optimization in the latter case was found to
have only a very small effect on space and
time requirements. The optimized code for
the portable and standard compilers are close
in time and space requirements; the non-
optimized code for the standard compiler is
poorer. :

* For other PDP 11 models the average speed
improvements differed slightly as follows: PDP
11745 — 5.7%; PDP 11/34 - 6.1%:; PDP 11/23 —
5%.

.8-

4.3 VAX Small Address Option

As stated earlier, results for the VAX
excepting b2 were obtained using -the -d?
option which informs the compiler that all
address offsets are smaller than 32K; this
enables the compiler to use smaller bit fields
for addresses yielding smaller and very
slightly faster running object code modules.
If during the formation of an object module
the 32K limit is exceeded, the compilation
aborts with an error message. At this point,

a second try without the option can be made.

The increase in text size for the benchmarks
encountered when the option was not used is
given in Table 7.

bl  13.3%
b2 -
b3 8.5%
b4 16.5%
b5 14.9%
b6 17.5%
b7 7.0%
avg. 13.0%
Table 7
VAX Text Size Increase Without
-d2 Option

The option did not affect the data size of any
of the benchmarks. The improvement in
average execution speed in using the option
was found to be negligible (.3%).

5. DISCUSSION

During the course of running the bench-
marks, a number of factors became evident
which would cause the benchmark results to
deviate from what might be experienced in
practice by the class of programs of interest
here.

5.1 Character String Manipulation

No attempt was made to tailor the bench-
marks in any way so that they would per-
form well on any of the machines in ques-
tion. Nevertheless, the selection of existing
code as a basis for the benchmarks tends to
favor the PDP 11, the most common target
machine. Experienced coders usually know
which of alternate possible C language con-
structs will yield the most desirable PDP 11
object code. One major aspect of this is the
technique for string manipulation. PDP 11
coders commonly -do this by establishing



pointers to posilxions within byte arrays and
manipulating these pointers and their targets
to achieve dwred results. This works very
well on the PDP 11, and acceptably weil on
most of the other machines examined here.
Some machines, such as the Honeywell
6080, Tandem 16 and UNIVAC 1100/81,

however, require inordinate numbers of
instructions to 'manipulate strings in this
fashion. For these machines, string compu-
tations execute much faster if programmed
in terms of arrays and indices. It is interest-
ing to note that the Honeywell 6080 and
Tandem 16 machines have special hardware
instructions for rapid byte string manipula-
tion which could be (actually are in the case
of the Honeywell) incorporated into the C
library string manipulation functions.

Four of the benchmarks, 52 - 55, mani-
pulate byte strings using character pointers
and are thus affected. To obtain a rough
idea of the magnitude of the effect, 52 was
experimentally altered for the Honeywell and
Univac machines. Substitution of the
Honeywell C library string compare function
for the equivalent function incorporated into
b2 (the latter was taken from the C language
manual‘) yielded a 30% improvement in
execution speed. Manipulation of 52 to
better suit it to the Univac environment
yielded a 37% speed improvement.
Improvements of similar magnitude could
also be expected! for the Tandem machine.

The issue of efficient access to data by
pointer versus by indexed array applies gen-
erally to all types of data. For these bench-
marks, however, character data predom-
inates.

5.2 Memory Caches

The VAX 11/780, PDP 11/70, 3B-20,
and the high end IBM, Amdah! and Univac
machines have memory caches as integral
parts of their} designs. The remaining
machines, unless otherwise noted, do not.
The caches on the IBM, Amdahl and Univac
machines are qdne large — large enough to
hold many if not most programs in their
entirety. For the PDP 11/70,VAX 11/780,
and 3B-20 machines, entire program cache
residency would be the exception rather than
the rule, and cache hit ratios would tend to
fall significantly| short of 100%.* Cache hit

¢ The PDP 11/70 cache consists of 1024 16-bit words

ratio depends heavily on 9’& program being
executed. DEC literature™ " quotes overail
cache hit ratios for their machines in the
80% — 95% range with a typical value of
95% for the VAX 11/780 and somewhat less
for the. PDP 11/70.

Behavior of the cache in the VAX
11/780, PDP 11/70 and 3B-20 machines
complicates the interpretation of these
benchmark measurements. While it was not
feasable to measure the hit ratios attained, it
is ‘reasonable to expect atypically high values
overall due to the use of short programs and
data, tight program loops, and because there
was no competition from other programs. In
particular, b3 - b7 should fit entirely within

" the cache and achieve virtually 100% hits.

bl and b2 are small programs but encounter
cache misses - b/ because of its stack activity
and b2 because of its large data arrays. The
hit ratios for b and b2 are difficult to
predict. Benchmark hit ratios that are higher
than obtained by a normal mix of programs
cause the machines affected to appear faster
than would be observed in normal service.

An experiment was performed to help
estimate cache effects on the PDP 11/70. 52
- b7 consist of loops that repeatedly execute
a relatively short program segment to
achieve measurable running times. To
determine the transient aspects of this code
execution and to obtain an idea of how a
benchmark without this somewhat artificial
type of construction might perform, the
cache was initially invalidated by repeatedly
executing a large irrelevant program segment
several times and then a hardware monitor
was used to measure execution times for
successive passes through the loops in 52 -
b7.

A Comten Dynamite 8016° hardware
monitor provided four external timers, each
accurate to 10 us. Software access to the
hardware monitor to trigger the timers was
provided by an otherwise unused floating-
point maintenance register on the PDP 11.
This method was taken from Hayden® It was
found that by the third pass through each
loop, execution time had essentially

organized into two 512 word groups. The VAX
117780 cache is somewhat similar to the PDP 11/70
cache but consists of two groups of 1024 32 bit
words. The 3B-20 cache consists of four groups of
512 32 bit words.
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stabilized. Table 8 shows the times for the
first and second loop passes, normalized to
the steady-state value and corrected for
timer start/stop overhead.

Pass 1 Pass 2 Steady State

bl - - -

b2 1.00 1.00 1.00
b3 1.48 1.01 1.00
b4 1.24 1.00 1.00
bs 1.21 1.05 1.00
b6  1.50 1.03 1.00
b7 1.24 1.00 1.00

Table 8

PDP 11/70 Cache Effect on Execution Time
For Successive Loop Passes

A loop of b2 required about 700 ms; line
clock interrupts as well as the overall length
of the time period obscure any initial cache
loading transient. For the other bench-
marks, the initial loop executed from 21% to
50% slower.

The cache hit ratios for this experiment
are unknown. Only the outermost bench-
mark loop was broken permitting significant
cache hits due to internal loops and repeated
access to data values. 56 which showed the
largest (50%) difference is a linear code seg-
ment with no loops other than the one
measured. A similar experiment using a
repeated execution of the UNIX/TS getpid
system call on the PDP 11/70 showed an
87% longer time for the first execution.
Differences of 50% or more, however, would
only be encountered for programs with
unusually low cache hit ratios.

A second experiment, in which the
benchmarks were run with the caches on the
VAX 11/780, PDP 11/70 and 3B-20 com-
pletely disabled, helps set a lower bound on
the speed of the three machines. Average
speed for the seven benchmarks was found
to degrade by a factor of 2.83 for the VAX
11/780, 2.96 for the PDP 11/780, and 1.42
for the 3B-20.* The 3B-20 result indicates far

* The degradation in execution speeds of 67 - b7
obtained by disabling the VAX 11/780, PDP 11/70,
and 3B-20 caches were as follows
VAX 11/780: [.40, 31, 35, .37, .36, .35, .32]

PDP 11/70: .40, .36, .32, .33, .32, .34, .31]
3B-20: [.92, 65, 67, .69, .66, .68, .72]

less dependence on the cache than occurs for
the DEC machines. (This is expected since
the 3B-20 uses relatively fast memory.)

Instruction times on the PDP 11/70 tend
to be dominated by memory access. A
review of memory access times for the VAX
11/780, PDP 11/70, and 3B-20 is helpful in
determining the effect of cache hit ratio on
execution speed. The access times for cache
hits and misses are given in Table 9.3

Cache Hit Cache Miss

PDP 11/70 3us 1.3us

VAX 11/780  2us 2.0us

3B-20 25us 80us
Table 9

Memory Access Time For Cache
Hits and Misses

For hit ratios near 100%, small changes
in hit ratio can yield large percentage
changes in memory access time. Effective
PDP 11/70 memory access times increase
33% in going from 100% to 90% cache hit
ratios. Effective VAX 11/780 memory
access times increase 45% in going from
100% hit rate to the 95% value quoted by
DEC as typical for this machine. 3B-20
access times increase 11% in going to 95%
hit rate. The relatively large effect for the
VAX is perhaps why the VAX uses a much
larger cache than the PDP 11/70 plus an
instruction lookahead mechanism which
lessens the effect of some of the cache
misses on machine speed. (The 3B-20 also
usessuch a mechanism).

The 3B-20 speeds in Section 2 should
require only minor downward correction to
adjust to cache hit ratios obtained in normal
use. For the DEC VAX 11/780 and PDP
11/70, the required corrections are more
significant. Since memory access times are
only a component of total instruction times,
it is difficult to say how much of a correction
to apply without further experiments or
simulations; a 20% downward correction in
speed factor for the PDP 11/70 appears rea-
sonable, based on a review of the effect of
memory access times on instruction times*
and the evidence in Table 8. A reasonable
VAX 11/780 correction is probably on the

* A 20% correction is that obtained in adjusting from
100% to 90% hit ratio for a PDP 11 add A.B.

instruction using indexed address modes (mode 6).



same order, but is more difficult to estimate
with the evidence available.t

5.3 Word Size

These benchmarks, unfortunately, pro-
vide no advamgge to the machines with
word size !arger‘ than 16 bits. Larger word
size yields correspondingly higher precision
results for arithmetic on integers. It also
permits faster bqlk data copies — something
that operating systems do frequently. As an
example, a smallrlest program to simply copy
an array of data from one place to another in
the same address space achieved a rate of 1.6
megabytes/second on the 32 bit VAX
11/780 as | compared to .92
megabytes/secon';d on the 16 bit PDP 11/70.
This is a 74% difference between the two
machines as corhpared to an average 13%
difference obtained with the benchmarks.

Probably most important aspect of a
larger word sizel however, is the increased
ability to deal with large addresses. This per-
mits the manipulation of very large data
arrays and -allow§ very large programs to be
maintained intact rather than being written
as smaller pieces that intercommunicate.
This difference is to some extent fundamen-
tal in terms of the architectural freedom it
allows and the ty;pes of problems that can be
handled. It also enables more efficient
operating system{ design. (It is often possi-
ble to handle large address spaces using

small word sizq machines by appropriately

manipulating memory map hardware; the
cost in software complexity and perfor-
mance, however, usually makes it advisable

to choose a more suitable processor.)

5.4 CPU Featuresito Support an Operating Sys-
tem Environment .

In general, only minimal CPU features,
present in all of the machines, are required
to execute the benchmarks used here. Other
features, such as memory management, aids
to context-switching, program interrupt han-
dling, virtual |address capability, 1/0

t The VAX and 3B-20 desigrsalso include an address
translation buffer|cache 10 hold 128 recent virtual to
physical page address transiations. The benchmarks
here would runfwith a 100% hit ratio for this
mechanism (as would almost ail programs fun in
stand-aione modr)’. Hit rates below 100% would
likely be encountered on a heavily loaded machine.
Time loss due o cache misses of this type is
probably best lr}eated as extra overhead on an
operating system fonlexl switch.

1
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channels, DMA capability, memory protec-
tion and error recovery can dramatically
affect attractiveness and performance of the
machine for an operating system environ-
ment. These features are present in
different forms on most of the machines and
tend to be omitted or skimpy on the low-end
machines. The minimal nature of the
benchmark requirements has the effect of
making the microprocessors look more
attractive when compared to high-end
machines than would be the case if the
entire picture was viewed.

5.5 Other CPLU Comparisons

Three other studies have compared
machines on the basis of C code execution
speed for non-arithmetic computation. The
methodologies of these studies differed.
along with the code segments used for com-
parisons. For the most part, the studies
were of a predictive nature, performed in the
absence of hardware and in some case com-
pilers for the machines in question. in no
case were benchmark programs actually exe-
cuted.

W. Rash’ compared the MAC 8 1o the
Intel 8086 and Zilog Z8000 processors by
hand compiling three small test programs
according to a stated set of rules. Calculated
static cycle counts, adjusted by machine
clock rate, were used as a basis for speed
comparison. Optimistic assumptions were
used for the hand compilations, yielding
MAC 8 cycle counts which bettered by 23%
those achievable with the then available
MAC 8 C compiler.

A. Berenbaum, J. Molinelli, S. Pekarich
and J. VanOrnum' compared the MAC 8,
Intel 8086, Zilog Z80A and Zilog Z8000
using benchmarks which included prototypes
of b3-b7 used here. Available compilers
were used for all but the Z8000. For the
Z8000, C code was passed through the
PDP-11 compiler and the resuiting assembly
instructions were hand translated into Z8000
instructions. Speed comparisons were based
on calculated cycle counts, adjusted by clock
rate.

Most recently, Boivie and Rutter® com-
pared the Intel 8086 10 the DEC LSI 11,
PDP 11/23, and PDP 11/45 computers using
the C source for a variety of UNIX com-
mands. For the Intel 8086, the programs
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PDP 11723 PDP 1145 Zilog Z804 Zilog Z8000

MAC 8 Intel 8086 LSI 11
(2 mhz) (5 mh2)

" (4 mhz) (4 mhz)

Rash 1 2.97 . - . . 271

Berenbaum 1 2.25 - - - .74 2.64

Boivie - 1.93 ., .728 1.19 2.03 - - |

Feder 1 2.10 728 1.66 2.49 - .
Table 10

Comparison of Speed Factors Obtained

were first compiled into PDP 11 assembly
code and then this code was mechanically
translated into Intel 8086 instructions. Static
counts of the 20 most frequent
instruction/address-mode combinations were
used in conjunction with manufacturers
stated instruction times to estimate relative
program run times.

A comparison of these results with the
results obtained here is given in Table 10.
Since the benchmarks are all different, only
ratios of machine speeds are available. To
compare results, speeds have been normal-
ized where possible to the MAC 8. Since
Boivie and Rutter did not include the MAC
8, their speed factors have been adjusted so
that the LSI 11 speed factor matches that
reported here (last row). Zero wait states
are assumed for the MAC 8, Intel 8086 and
Zilog machines.

The MAC 8 result for Rash is that given
for the actual as opposed to hypothetical,
MAC 8 C compiler. The Intel 8086 speed
factor in the last row is the value measured
here adjusted upward by 15% to reflect zero
wait states.

Allowing for differences in benchmarks,
compilers (or compiler assumptions),
sample-to-sample machine speed variations
and the néeed to rely on manufacturers state-
ments concerning instruction timing, there is
for the most part reasonably good agreement
between results. This indicates the availabil-
ity of a variety of methods for predicting
potential C language CPU performance in
the absence of hardware or compilers.

5.6 Benchmark Improvements

The benchmarks used here were
developed on a constrained time schedule
with attention to only some of the factors
that affect speed of program execution.
Tools for measuring program properties are
being developed and improved; these tools
should improve understanding of the current
benchmarks and yield new and better ones.

Some areas for improvement are listed
below:

e Use of dynamic as opposed to static
occurrences in attempting to match
properties of existing code.

e Control of benchmark properties that
affect cache hit ratio.

e Control of pattern of occurrence of
program control transfers to accurately
portray pipelined processors.

e Attention to the number of registers
that can be advantageously used during
execution.

e Attention to distribution of the magni-
tudes of references to storage to accu-
rately portray machines that efficiently
encode small address offsets.

e Important operating system functions
should be identified and appropriately
represented in the benchmarks.

¢ It would be helpful if the benchmarks
generated some kind of result (perhaps
displayable only during trial runs) to
verify correct program execution.

6. SUMMARY

A set of numbers has been presented
comparing the execution time and space
requirements of seven C programs run on a
wide variety of machines. The approach has
been to use existing benchmark tools, sup-
plemented by additional data and cautions in
known weakness areas, to provide timely
information. Due to benchmark limitations,
speed variations in individual machines and
ongoing C compiler changes, the results only
approximately portray the CPUs in question;
the reader is cautioned against fine-grained
viewing of these numbers.

3 Fedy
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APPENDIX A

BENCHMARK PROGRAM LISTINGS

/% benchmark program nusber 1 8/
/% ackermann’s function &/
sain() {

?ek(B.B);

/% ackermann’s function &/
ack(m,n} ant m,n;

if (m =2 0)
return(n+1);
else
if (n =2z 0) .
return{ack(m=1,1));
) return(ack(m=1,ack(m,n=1)));

/* penchmark program number 2 %/
/% word count %/

#define NULL (struct tnode %) 0

struct tnode ‘
char *word;
int count;
struct tnode *ieft;
?truct tnode fright;

char 'uuarrax {1000] =
"Maintenance
“Documentatxon"

mert 1000 WORD ARRAY

.
"used" )
H
struct tnode tnarray (1000];
int t;
char chrs [10000]1;
int ¢;
majn() { /® count occurrences of words %/

nt 1,n;
struct tnode ®root, ¥tree();
for (1:1{ 1 <330; iee) |
e 0;
root = NULL;
for (nzO. n<1000; nee)

oot = tree(root, wdarray(nl);

%reeprint(root).
}

struct tnode ¥

tree(p,w) struct tnode ®p; char ®w; { /* add word to tree ¢/

struct tnode ®talloc();
char *strsave();
int cond;

if (p == NULL) .
z tall e();
p->uord z strsave(w);
p-)couﬂt = 1;
p=>left
->rxght NULL;

else 1f T(cond 2 stemp(w,p=>word)) =z 0}
-CoUnt+e;

else 1f {cond < Q)
p->left = tree(p->left u);

g-)r;gnt 2z tree(p=>right,w);
?eturn(p H

else-

struct tnode *
talloc() { /% allocate a tnode ®/

?eeurn (&tnarray[tes]);

char ¢
strsave(w) char ®w; { /® make a copy of string w */

char %cp,¥cps;

&chi
AR O
C+e;

cee
seturn (cpa);

treeprint(p) struct tnode ®p; ( /® print tree &/

if (p t= NULL) (
treeprint(p=>left);
sreeprinte p->rzgh€)'

stemp(s, u)
register char s, Oy;

for( ; 'a :- u. \6 g0¢)
rnturn(ﬂ).
rotnrn('s - %u);

‘8 ccrremiey meepene o meae . 8-
¥ ceccreney etpene o et .

regisier cras Sny, &n- ooy
register int n:

n s qses.

r3
r:
40

e

z O
Priee 2 'r::
*riee = 33

} whileieen

i

qstexcia, 3
Tnar * "3

register char ey, ®p. ong:

register int 3;
nt n;

n : gaes
:
B

S ]

-
.
o

¢ r Opy;
riee = %ry;
.r-(.o 3 0
rv.o t o3
J whnileiean®;

1
%ﬂxv(l.u.q)

]
stemp(ssl, ss!
vi'n-r Oan1,0ss.;

register cnar ®a', e |
31 3 ss!; s, s as';

while (981 == O37.."
10 (Onleezs '\ N
Y‘Pl urr
return(®at < fooa’?




I‘ benchmark program number 4 ¢/

/* tty driver fragment ®/

L4
struct

s
struct

by

O&eflne
#define
4def1ine
¢tdefine
4define
#define
#define
#define
#define

int
Sdef:ne

char
char

main{)

{

1

Qlist |

nt g_count.
char q_char;
char 'q_free.
packet

char 'next S
char pdatafﬁ
CERASE ‘#’

CEOT 004y
CKILL (3
CQUIT 034
CINTR 0177
SIGINT 2
SIGQIT 3

ERROR  (-1)
NULL [

col;
CANBSIZ 132

fcbpl;
canonb[CANBSIZ];

extern char ®cbpt;
register int p;
register int 1;

for{ 1 = 0; i < 30000; iss) {
ebpt = agaqonb[\].
canon(p="t",canond);
canon(p,canonb);
canon{p,canonb);
canon p.canonb H
canon{p = QK;LL ,canond);
cano n N canonb).
} p = 6

%tyoutput(ac,queue) int ac; char %queue;

}

register int c;
int extern t_col;

= ackQ1
:f (:==Q\ZI} {

do ttyoutput(

‘,queue); while (t_co0l&07);
return;

}

if(c ==z “\n°) ttyoutput( \r’,queue);
uhxle(putq(c,queue) ERROR) urlushtty(queue)

switch (¢) {

default:
t_COles;
break.
case 010;
if(t Col) t_colew;
eak;
case ‘\n”:
t_col = 0
,. break;
case ‘\r’:
ttyoutput(0177,queue);
ttyoutput 0177,guene H
ttyoutput(0177,queue};
ttyoutput(0177,queue);
t_col = 0;

}

?anon(ac.queue) int ac; char %queue:

}
putq(e,

}

register char ®bp;
register int c;

¢ = ac;

1F(up{-?] = W) {
switeh(e) {

case CERA?EDE > &canonb[1]) --bp;

case CKILL.
E = &canopb[]];
t youtput( \n ,;queue);

detault.

} %bpes c c;

else if(e g2 CERASE {! c == CKILL) bp[-1] =
?poo E-H

’8
if(e == 9\3? 11°c == CBOT i bp > &cnnoub[CANBSIZ]) {

P
"g 4 cano!
ile{bp < tq(®d,
bp = -cgnon§§ 1’ PULQ(®bpes,queue);

}

ebpl = bp;
3ueue)
queue;
return(0);

;;}gﬁgggr(q)

/% venchmark program number 5 #/
/% symbol table insert #/

L4
#define ERROR éstruct symbl #) -1
#define MAXHASH
#define NIDENT

R
#define ALPHA 1
#define NUMERIC 2
¢#define ARITH
EFATL

struct symbl {
g:ar ident[NIDENT];
int reloc;
int sdind;
int sclass;
int stype;
int value;
struct symbl 'next.
struct symbl ®prev;
} struct symbl ®order;
’

struct synbl *fsym = 0;

int sdindex

struct symbi ®hashtb[MAXHASH), ®lsym, undef;
int p2flg, slno;

0
Taln

register int i

?tr?cz sygbl ‘adds 00 i )

orl 1 = >
ad&aym("asyubél“,z 5’

1 return;

struct symbl ® addsym(name, val, rel)
char #name;
%nt val, rel;

extern int sdindex;

extern struct symbi 'hashtb[],

extern int p2fig, s

extern struct synbl ‘rsyn, #]1sym, undef;
register int

struct aymbl ‘alloc({ p 13

register struct symbl %p, ®pn;

.

[ -
if ('name =z ‘\0
name, sdindex

* return(&undef);
d ndex.
f ((p= alloc(s&zeof #p)) == ERROR) {
paflg = 13
slno = 0'
while (type(‘c) 1)
error(éFATL, "gs - too many (%d) symbols",
name, sdindex);
) exit\(o),
for (i = 0; < NIDENT‘ ito)!
gf ((type( namees) & 1) 1z 1) break;
p=>ident[i] = ‘\0’;
p->value = val;
p->reloc = rel;
->sdind = 03
p->stype = 0;
.p=>sclass = 0;
E"“ﬁﬁinipgsza
Dorder htb}i],
as t
tsyn =z 8}
fsya = F:
lsym = p;
DSprey & O]
Petornip); '

lsym->next = p;
->prev = lsym;

) re urn(pi;
h
%::r(gp).
register char %p;
register int h;
= api
Hhile (tng('g) & 1) {
ir (p ?”ap « NIDENT - 1)
) break;
) return(h & (MAXHASH -~ 1));

error{i, sl, a2
har 8si, '52: ' 9

truct symbl ®
Elloc i),‘b

) return{&undef);

el
AEE

?71t1(stneua)

{
error(EFA L,"syntax requires ¥nbol"



/® benchmark program number £ %/
/% release buffer (UNIX) %/

struct buf

! int b_flags; /e

struct buf *b_Forw; /e
struct buf ®b_back; ’e

int b_dev; bl
int b_wcount ; d
char E_gadr' /%
char _gm /9
char *5"bikno; /¢
char b_error; /¢
char *b_resid; /¢

b

struct dummy {
xnt integ;
} stuff
struct dumng #PS = &stuff;
struct buf bfreelist;

#define B_WRITE
#define B_READ 0!
#define B_DONE (2

#define B_ERROR Q4
#define B_BUSY 010
#define B_PHYS 020
#define B:cAP o040
#define B_WANTED 0100
fdefine B AGE 0200
#define B_ASYNC 0400
#define B_DELWRI 01900
?ain()

long 1;

struct buf $sbp;

rop = &bfreel:st.
rbp-)av forw z &bfreelist;

rbp->av_back = &bfreelist;
rbp=>b_] Toru = &bfreelist;
rbp~>b_back = brreelzst.

for( i = 0; 1 <

}
}

brelse(bp}
?truc~ buf %bp;

see defines below %/
“ﬁ“die by devtab of b_dev ®/

position on free list, ®/

if not BUSY®/
ma joreminor device name %/
transfer count (usu. vorcs) &/
low order core address %/
high order core address LY

block # on device ®
returned after 1/0 &/

words not transferred after error %/

00000L; ies) {
freelzst b_flags =
brelae(&brreelxst..

(E _WANTED | B_AGE);

register struct buf ®rbp, ¥8backp;

register int sps;

b
xf (rbpg>b rla s&B_WANTED)

if (bfreellst b ffags&a HAN’ED) {
bfreeis ags &= ~B_WA

st.b_fla;
uakeup(&bfrcel:st)'

)
if (rbp—)b flags&B_EHROR) {

NTED;

ev
rbp->b rlags &s ?é ERROR:B_DELWRI);

&bfreelast;

}

sps = PSe)integ;

: %6() °8%

1 rop=>b, flass B_AGE) |
backp. = &bfreelist.av_forw;
('backp)->av back = rbp;
;bp->av roru = ®backp;

backp g

rbp-)av bac

} else |

backp = &bfreelist.av_back;

(%backp)->av_forw =

Pi

rbp-)av back = ®backp;

backp =

rbp->av_ fors =z &bfreelast;
rbp-)brfla s &= “(B_WANTED|B_BUSYiB_ASYNC!B_AGE);

bfreeliat.b_wcountes;
) PS=>integ = sps;

wakeup(bp)
truct buf ®bp;

7416()

/® benchmark program number " #/
/¢ statistics %/
int arrag[\O]

1006

main{)
{

register unsigned 1;

for ( 1 2 0; 1 < 30000 lee

stat(a-ra
for £ 1 2 0; 1 d c
stat(ar'ay.‘ﬁl.
) returs;

stat(arr nel)
®arr;
1nt 7el.

register int 13
register 1nt sum,mean;
int getmean(;;

sum = 03
for(z-o 1<neliee) ,.
sum «2 arr{1) 3
mean s getmean{arr, ne..suz
?etmedxan(ar'.ne..:um

int getmean(arr.ne:.sum)
int ?rr.sua;

register int i3
register int wean;

0;
for(z~0 i<nel;ies)

mean <z arr[i] ® i:
mean /z Sum;
seturn'meanl

getmedlan(arr nel,sum)
int ?rr »SUD;

register int i
register 1int part_sus:

ar 0;
%or(x-o 1<ne'-xoo)

e,

1f((part_sum ez arrl:.’

| Break:

sum>>2?



bl

b3
bd
bs
b6
b7

Appendix B- BENCHMARK EXECUTION TIMES

8086

Amdahl 3033 370/168 Univac 3B-20 VAX 1170 Eclipse Tandem H6080 Inter 11/45 (SMHz) 11/34 lli23 MAC 8 LSl

10.51
2.83
4.68
2.05
244
1.33
232

7.89
7.49
7.95.
1.76
6.80
8.20
5.99

11.32
3.16
5.48

22.40
2.62
1.55
242

732
6.71
6.79
6.63
6.34
7.03
5.74

29.62
7.37
11.89
5.93
6.30
3.90
4.63

2.80
2.88
313
2.68
2.64
2.80
3.00

343
14.0
23.7
9.2
11.5
7.2
9.3

242
1.51
1.57
1.73
1.44
1.51
1.49

52.1
18.6
36.5
13.5
13.7

8.8
222

1.59 125
1.14 121
1.02 1.1
118 1.03
1.21 118
1.24 1.14
63 L1

66.1
17.5
33.6
15.4
14.1

9.6
125

82.9
21.2
37.2
159
16.6
109
13.9

47.0 78.8
19.0 26.0
44.0 59.1
18.0 215
19.5 225
11.0 148
25.0 20.9
Table Bl

974
321
65.9
219
29.1
12.1
18.3

Execution Time In Seconds

1.00

1.76 1.05
1.12 .82
85 .63
.88 74
85 .74
99 7.04
.56 .67
Table B2

104.5
34.0
62.8
271
26.7
16.3
24.7

Execution Speed - Normalized to PDP 11/70

170.3
48.7
91.0
384
40.1
253
349

49

231
68
132
51
55
33
61

8086

359
312
.282
312
302
330
228

345
310
281
290
.288
315
.246

240.6
68.4
1323
549

258.1
71.8
1400
5715
59.9
3n
66.4

358
125
230
100
101

S5
426

MAC8
Amdahl 3033 370/168 Univac 3B-20 VAX 11/70 Eclipse Tandem H6080 Inter 11/45 (SMH2) 11/34 11/23 (2MHz) LSI11

321
295
.266
27
277
294
.209

232
170
.162
159
164
.198
.033

304
130
137

85
160

122
122
121
128
087



-’

bl
b2
b3

bs
b7

bl
b2
b3
b4
bs
b6
b7

bl
b2
b3
b4
bs
b6
b7

bl
b2
b3

bs .

b?

60
392
424
436
348
228
172

vAX

35768
68
140
164
60

40

vax
0.698
0.947
0.800
0.944
0.829
0.877
0.804

VAX
1.00
1.389
1.097
0.946
1.491
2.143

Appendix C - BENCHMARK SIZES

VAC 3B-20 PDPIl1  Eclipse 8086 MAC8 Tandem
84 86 70 102 94 194
428 414 340 424 459 400
500 530 606 550 510 684
468 462 454 488 547 554
436 420 490 476 486 500
244 260 278 250 239 288
180 214 252 218 287 254
Table C1: Text Size in Bytes
3B-20 PDPll1 Eclipse 8086 MAC8 Tandem
0 0 0 0 0 0
35764 25758 26272 25758 25757 25764
72 62 62 62 61 64
156 148 152 136 158 138
160 110 112 110 109 114
56 28 28 28 21 30
40 20 .20 20 20 22
Table C2: Data Size in Bytes
3B-20 PDP11  Eclipse 8086 MAC8 Tandem
977 1.000 0.814 1.186 1.093 1.209
1.034 1.000 0.821 1.024 1.109 0.966
943 1.000 1.143  1.038 0.962 1.291
1.013 1.000 0983 1.056 1.184 1.199
1.038 1.000 1.167 1133 1.157 1.190
939 1.000 1.069 0962 0919 1.108
.841 1.000 1.178 1.019 1.341 1.187
Table C3: Text Size - Normalized to PDP 11
3B-20 . PDP1l1  Eclipse 8086 MAC8 Tandem
1.0000 1.000 1.000 1.000 1.000 1.000
1.389 1.000 1.020 1.000 1.000 1.000
1.161 1.000 1.000 1.000 0.984 1.032
1.054 1.000 1.027 0919 1.068 0.932
1.455 1.000 1.018 1.000 0.991 1.036
2.000 1.000 1.000 1.000 0.750 1.07
2.000 1.000 1.000 - 1.000 1.000 1.100

2.000

Table C4: Data Size - Normalized to PDP 11

Inter.

104
736
816
834
788

- 460

372

Inter
0
36280
72
136
168
64

40

Inter
2.256
1.778
1.540
1.805
1.876
1.769
1.738

Inter
1.000
1.408
1.161
0.919
1.527
2.286
2.000

IBM 370
230
886
982
964
932
508
472

IBM 370
64 -
35870
172
288
288
176
128

IBM 370
2.674
2.140
1.853
2.087
2.219
1.954
2.206

IBM 370
o0
1.393
2.774
1.946
2.618
6.286
6.400

Univac .
320
1328
1620
1300
1520
1036
724

Univac

37148
176
236
300
136
112

Univac
3.721
3.208
3.057
2.814
3.619
3.985
3.383

Univac
oo

1442

2.839
1.595
2.727
4.857
5.600



Appendix D

COMPARISON OF ALTERNATE COMPILERS FOR PDP 11 AND MAC 8

bl
b2
b3

bS

b7

bl
b2
b3

bS

bt
b7

Relative Speed*  Relative Text Sizet  Relative Data Size}

-1.7% +34.9% 0

-0 +5.3% 0

-1.3% +5.3% 0

-3.1% +6.5% -8.1%

-2.4% +10.5% 0

-2.7% +6.9% 0
-.1% +9.4% 0

Table D1

Comparison of Portable PDP 11 Compiler
With Standard Version

Relative Speed*  Relative Text Sizef  Relative Data Size}

0 -1.1% 0

0 -1.1% 0
+3.9% +10.8% +1.6%

0 -2.2% 0

-4.0% -3.9% 0
+3.6% +8.0% +28.6%

-3.5% -10.8% 0

Table D2

Comparison of Old MAC 8 Compiler
with New Version

Positive percent values indicate faster execution

t+ Positive percent values indicate larger size
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