/S HY
@ Bell Laboratories Cover Sheet for Technical Memorandum

The information contained herein is for the use of employees of Bell Laboratories and is not for publication (see GEI 13.9-3)

Title: A Memory Device Driver for UNIX™ Date: May 9, 1980

Other Keywords: memory files TM: 80-3168-5
memory filesystems
block device
character device

Author(s) Location Extension Charging Case: 49408-120
Alan L. Glasser HO 1E-335§ 6569 Filing Case: 40324-2
ABSTRACT

A device driver that simulates a fixed-head disk with main memory is described. Both block
and character interfaces are provided; hence, file systems can be ‘‘mounted™ in memory. The
maximum size of such a file is user specifiable; a set of preset size files are provided with sizes
from 64K bytes to 512K bytes. The uscr interfuce, implementation, performance and possible
future work are presented.

TM-80-3168-5

Pages Text: 3 Other: 1 Total: 4 : LAUTENBACH,DEBORAH A cM
. . . . PY2HZ10 05723780
No. Figures: 0 No. Tables: 0 No. Refs.: 3 - SUBJECT MAICE UNOS

E-1932-U (3-76) SEE REVERSE SIDE FOR DISTRIBUTION LIST

TT Y T Y)

Bell Laboratories

subject: A Memory Device Driver for UNIX™ date: May 9, 1980
Charge Case 49408-120
File Case 40324-2 from: Alan L. Glasser
HO 3168

1E-335 x6569

TM 80-3168-5
MEMORANDUM FOR FILE

1. INTRODUCTION

With the cost of memory dropping, and larger amounts of memory becoming commonplace we
have begun investigating new ways to utilize that memory. One technique that appears to be
attractive for DEC PDP-11/70 UNIX systems is to use memory to contain entire files or file
systems. This technique is not new; it was used by Ken Thompson and Rick Brandt when they
ran benchmarks on the first PDP-11/70 UNIX system [1]. The details of that early memory
driver were never published. This memorandum documents a memory driver that runs on a
PDP-11/70 under the PWB 2.0 (UNIX/TS 1.1) version of the UNIX kernel.

2. USER INTERFACE

The driver provides both block and character (raw) interfaces. The minor device number [2] is
used to further divide the files provided into two categories: auto-allocate and non-autoc-allocate.
Auto-allocate files cause memory space to be allocated when the file is opened; non-auto-
allocate files require sty [3] system calls to cause allocation.* Space is freed only via stty. This
can lead to some unfortunate situations: if an auto-allocate special file is used for the temporary
file of an fsck command, the space allocated is not automatically freed when the fsck terminates.
The system, if allowed to continue in this way, will run with.a reduced complement of useable
primary memory.

The block device interface allows file systems to be mounted in memory, and, of course,
utilizes the buffer cache in the kernel. This interface requires a minimum of one data copy
operation, and, depending on cache performance, possibly two copy operations for each read
and write. The raw interface, however, copies the data only once.

3. PERFORMANCE

The reason this driver was initially written was to provide a high performance temporary file for
fsck. Additionally, this has been our most frequent use of this driver. The driver has been
very convenient to use, and is faster than using a disk file. We have two PDP-11/70 systems
with only a single RP06 drive per system. When the fsck temporary file resides on the same

* The attached manual page provides the necessary details to actually use the driver.

drive as the file system being checked, the resultant head movement causes rather poor
performance. This driver provides significantly better performance than using a single disk
drive, and somewhat better performance than using an additional disk drive.

We have not made extensive use of the block device interface, and thus do not have much
performance data to quote. One series of experiments was performed, on an otherwise quiet
system, with /tmp mounted on /dev/mosil. A program was compiled a few times. The real
time per compile was approximately 16.5 seconds (as reported by the time command). With
/tmp in its normal place on disk the time per compile was approximately 18.1 seconds—not a
significant or outstanding improvement. However, there was little real disk traffic due to a 127
block buffer cache.

No tests have been made under load. While this driver may provide significant performance
improvements (mounting /tmp, /bin or /lib, perhaps), much measurement must be done to
find the area of maximum improvement.

4. IMPLEMENTATION

All that is required to implement this driver is to be able to copy memory. There are three
classes of copying: (1) the raw case (physical address and user virtual address), (2) the system
addressable buffer case (physical address and kernel virtual address), and (3) the non-
addressable buffer case (two physical addresses). The first case uses the copyio routine, with a
loop to copy no more than BSIZE (512) bytes at a time (copyio cannot copy arbitrarily large
amounts of memory; BSIZE bytes seems like a reasonable amount to do at a time). The
second case is a simple copyio. The last case takes advantage of the fact that both non-
addressable buffers and the memory for these special files begin on click boundaries. The last
case makes repeated calls on the copyseg routine.

5. FUTURE WORK

For the case of non-addressable system buffers one would like to devise a scheme that would
eliminate the need for copying the data. After all, the data is in memory. Some way of
changing the buffer address to point directly at the special file memory, with the ability to
restore the buffer address is needed. No solutions are known by the author; this problem is
mentioned in the hope of a reader discovering a solution.

Finally, this driver might lend itself to being the fast, small part of a split-device file system. A
split-device file system is a file system where one portion (the ilist) resides on a fast, but small
device, and the remainder of the fii= system resides on a slower, but large device. A split
device file system is implemented with a pseudo-driver that forwards requests to two other
drivers, where the boundary of the file system and the names of the other two devices are set
via an sty system call. The split-device file system offers some possible performance
improvement (about 45% of all file system traffic for typical user file systems is to the ilist) at
the expense of rather obvious crash-recovery problems.

)

¢
<

I YR Y

6. ACKNOWLEDGEMENT

The author gratefully acknowledges the debugging assistance provided by David M. Ungar
when we both learned the sad truth that copyio can’t copy an arbitrary amount of data.

REFERENCES

{11 R. B. Brandt and K. Thompson. Benchmark of UNIX on DEC 11/70. TM 75-8234-4,
75-1271-4,

(2] K. Thompson. UNIX Implementation. The Bell System Technical Journal 57, 6 (July-
August 1978, Part 2), pp. 1931-46.

[3]1 stty(2) in PWB/UNIX User's Manual, Release 2.0, June 1979.
HO-3168-ALG-alg Alan L. Glasser

Att.
Manual page for mos(4).

a?t. 5 u

MOS(4) ' PWB/UNIX Release 2.'0 (local) - MOS(4)
7~
NAME
mos — memory fixed-head disk simulator
DESCRIPTION
- The files mos0, mosl, ..., mos7, mos10, mos11, ..., mos17 are the interfaces to a driver that
: simulates a fixed-head disk with main memory. The files are not ‘‘exclusive use”. It is
expected that these files will be used more in a shared environment than in an exclusive use
environment (e.g., tables that are created dynamicaily, relatively small, and referenced often).
The first 8 files (mos0, ..., mos7) are equivalent; 8 different files are provided for 8 possible
different and simultaneous applications. The maximum size of one of these files is set via an
siy(2) system call.
The sty function expects arguments of the form:
~ stty(mosfd, arg)
struct {
int code;
int *size;
int fill;
} *arg;
The codes are defined in fusrfinclude/sysfmos.h and are:
define GETSZ 0
define SETSZ 1
define FREE 2 .
GETSZ causes the current size to be stored in *size. SETSZ causes the current size to be set to
- *size, an error (ENOSPC) is returned if there isn’t space. FREE frees the memory; size is

unused in this subfunction. All sizes are in 64 byte basic memory units (clicks).

A typical sequence for using such a file is: open, stty to allocate space, use the file, stty to free
the space, close the file. Changing the allocation after the initial allocation is unwise. The last
8 files (mos10, ..., mos17) allocate space automatically when the file is opened. The following
table gives the size per file:

File Size (K bytes)
/dev/mosl0 64
/dev/mosll 128
/dev/mos12 192
/dev/mosl3 256
/dev/mosi4 320
/dev/mosiS 384
- /dev/mos16 448
' /dev/mosi7 512

All of these sizes are the maximum size the file can attain. The application must track the
actual number of bytes written. In addition to these 16 block devices, there are also 16
corresponding character (raw) devices. As with other such devices, the names of the raw dev-
ices begin with an r (e.g., /dev/rmosi0).

CAVEAT
- Undisciplined use of these files can result in severe memory fragmentation. These files should
: be opened and space allocated early in the system initialization process (rc(8)) to avoid serious
fragmentation.

Page | May 9, 1980

