4.2BSD driver for DEC Deuna Ethernet board
bill
bill at green.UUCP
Sun Jan 13 07:20:51 AEST 1985
# Here is a driver for a DEC Deuna Ethernet driver.
# We have had it installed on two 11/750's here for about four months
# now without any problems which can be attributed to the
# driver.
#
# I'm not sure who we got it from, but the comments attribute it
# to Lou Salkind of New York University.
#
# Bill Bogstad
# green!bill
#---CUT HERE---
#!/bin/sh
: This is a shar archieve. Extract with sh, not csh.
: The rest of this file will extract:
: if_de.c if_dereg.h
echo extracting - if_de.c
sed 's/^X//' > if_de.c << '~FUNKY STUFF~'
X#ifdef RCSIDENT
Xstatic char *rcsident = "$Header: if_de.c,v 1.1 84/02/01 17:18:51 mike Exp $";
X#endif
X
X#include "de.h"
X#if NDE > 0
X
X/*
X * DEC DEUNA interface
X *
X * Lou Salkind
X * New York University
X *
X * TODO:
X * timeout routine (get statistics)
X */
X#include "../machine/pte.h"
X
X#include "../h/param.h"
X#include "../h/systm.h"
X#include "../h/mbuf.h"
X#include "../h/buf.h"
X#include "../h/protosw.h"
X#include "../h/socket.h"
X#include "../h/vmmac.h"
X#include "../h/ioctl.h"
X#include "../h/errno.h"
X
X#include "../net/if.h"
X#include "../net/netisr.h"
X#include "../net/route.h"
X#include "../netinet/in.h"
X#include "../netinet/in_systm.h"
X#include "../netinet/ip.h"
X#include "../netinet/ip_var.h"
X#include "../netinet/if_ether.h"
X#include "../netpup/pup.h"
X
X#include "../vax/cpu.h"
X#include "../vax/mtpr.h"
X#include "../vaxif/if_dereg.h"
X#include "../vaxif/if_uba.h"
X#include "../vaxuba/ubareg.h"
X#include "../vaxuba/ubavar.h"
X
X#define NXMT 2 /* number of transmit buffers */
X#define NRCV 4 /* number of receive buffers (must be > 1) */
X#define NTOT (NXMT + NRCV)
X
Xint dedebug = 0;
X
Xint deprobe(), deattach(), deintr();
Xstruct uba_device *deinfo[NDE];
Xu_short destd[] = { 0 };
Xstruct uba_driver dedriver =
X { deprobe, 0, deattach, 0, destd, "de", deinfo };
X#define DEUNIT(x) minor(x)
Xint deinit(),deoutput(),deioctl(),dereset();
Xstruct mbuf *deget();
X
X
X/*
X * The following generalizes the ifuba structure
X * to an arbitrary number of receive and transmit
X * buffers.
X */
Xstruct deuba {
X short ifu_uban; /* uba number */
X short ifu_hlen; /* local net header length */
X struct uba_regs *ifu_uba; /* uba regs, in vm */
X struct ifrw ifu_r[NRCV]; /* receive information */
X struct ifrw ifu_w[NXMT]; /* transmit information */
X /* these should only be pointers */
X short ifu_flags; /* used during uballoc's */
X};
X
X/*
X * Ethernet software status per interface.
X *
X * Each interface is referenced by a network interface structure,
X * ds_if, which the routing code uses to locate the interface.
X * This structure contains the output queue for the interface, its address, ...
X * We also have, for each interface, a UBA interface structure, which
X * contains information about the UNIBUS resources held by the interface:
X * map registers, buffered data paths, etc. Information is cached in this
X * structure for use by the if_uba.c routines in running the interface
X * efficiently.
X */
Xstruct de_softc {
X struct arpcom ds_ac; /* Ethernet common part */
X#define ds_if ds_ac.ac_if /* network-visible interface */
X#define ds_addr ds_ac.ac_enaddr /* hardware Ethernet address */
X int ds_flags;
X#define DSF_LOCK 1 /* lock out destart */
X#define DSF_RUNNING 2
X int ds_ubaddr; /* map info for incore structs */
X struct deuba ds_deuba; /* unibus resource structure */
X /* the following structures are always mapped in */
X struct de_pcbb ds_pcbb; /* port control block */
X struct de_ring ds_xrent[NXMT]; /* transmit ring entrys */
X struct de_ring ds_rrent[NRCV]; /* receive ring entrys */
X struct de_udbbuf ds_udbbuf; /* UNIBUS data buffer */
X /* end mapped area */
X#define INCORE_BASE(p) ((char *)&(p)->ds_pcbb)
X#define RVAL_OFF(n) ((char *)&de_softc[0].n - INCORE_BASE(&de_softc[0]))
X#define LVAL_OFF(n) ((char *)de_softc[0].n - INCORE_BASE(&de_softc[0]))
X#define PCBB_OFFSET RVAL_OFF(ds_pcbb)
X#define XRENT_OFFSET LVAL_OFF(ds_xrent)
X#define RRENT_OFFSET LVAL_OFF(ds_rrent)
X#define UDBBUF_OFFSET RVAL_OFF(ds_udbbuf)
X#define INCORE_SIZE RVAL_OFF(ds_xindex)
X int ds_xindex; /* UNA index into transmit chain */
X int ds_rindex; /* UNA index into receive chain */
X int ds_xfree; /* index for next transmit buffer */
X int ds_nxmit; /* # of transmits in progress */
X} de_softc[NDE];
X
Xdeprobe(reg)
X caddr_t reg;
X{
X register int br, cvec; /* r11, r10 value-result */
X register struct dedevice *addr = (struct dedevice *)reg;
X register i;
X
X#ifdef lint
X br = 0; cvec = br; br = cvec;
X i = 0; derint(i); deintr(i);
X#endif
X
X addr->pcsr0 = PCSR0_RSET;
X while ((addr->pcsr0 & PCSR0_INTR) == 0)
X ;
X /* make board interrupt by executing a GETPCBB command */
X addr->pcsr0 = PCSR0_INTE;
X addr->pcsr2 = 0;
X addr->pcsr3 = 0;
X addr->pcsr0 = PCSR0_INTE|CMD_GETPCBB;
X DELAY(100000);
X return(1);
X}
X
X/*
X * Interface exists: make available by filling in network interface
X * record. System will initialize the interface when it is ready
X * to accept packets. We get the ethernet address here.
X */
Xdeattach(ui)
X struct uba_device *ui;
X{
X register struct de_softc *ds = &de_softc[ui->ui_unit];
X register struct ifnet *ifp = &ds->ds_if;
X register struct dedevice *addr = (struct dedevice *)ui->ui_addr;
X struct sockaddr_in *sin;
X int csr0;
X
X ifp->if_unit = ui->ui_unit;
X ifp->if_name = "de";
X ifp->if_mtu = ETHERMTU;
X
X /*
X * Reset the board and temporarily map
X * the pcbb buffer onto the Unibus.
X */
X addr->pcsr0 = PCSR0_RSET;
X while ((addr->pcsr0 & PCSR0_INTR) == 0)
X ;
X csr0 = addr->pcsr0;
X addr->pchigh = csr0 >> 8;
X if (csr0 & PCSR0_PCEI)
X printf("de%d: reset failed, csr0=%b csr1=%b\n", ui->ui_unit,
X csr0, PCSR0_BITS, addr->pcsr1, PCSR1_BITS);
X ds->ds_ubaddr = uballoc(ui->ui_ubanum, (char *)&ds->ds_pcbb,
X sizeof (struct de_pcbb), 0);
X addr->pcsr2 = ds->ds_ubaddr & 0xffff;
X addr->pcsr3 = (ds->ds_ubaddr >> 16) & 0x3;
X addr->pclow = CMD_GETPCBB;
X while ((addr->pcsr0 & PCSR0_INTR) == 0)
X ;
X csr0 = addr->pcsr0;
X addr->pchigh = csr0 >> 8;
X if (csr0 & PCSR0_PCEI)
X printf("de%d: pcbb failed, csr0=%b csr1=%b\n", ui->ui_unit,
X csr0, PCSR0_BITS, addr->pcsr1, PCSR1_BITS);
X ds->ds_pcbb.pcbb0 = FC_RDPHYAD;
X addr->pclow = CMD_GETCMD;
X while ((addr->pcsr0 & PCSR0_INTR) == 0)
X ;
X csr0 = addr->pcsr0;
X addr->pchigh = csr0 >> 8;
X if (csr0 & PCSR0_PCEI)
X printf("de%d: rdphyad failed, csr0=%b csr1=%b\n", ui->ui_unit,
X csr0, PCSR0_BITS, addr->pcsr1, PCSR1_BITS);
X ubarelse(ui->ui_ubanum, &ds->ds_ubaddr);
X if (dedebug)
X printf("de%d: addr=%d:%d:%d:%d:%d:%d\n", ui->ui_unit,
X ds->ds_pcbb.pcbb2&0xff, (ds->ds_pcbb.pcbb2>>8)&0xff,
X ds->ds_pcbb.pcbb4&0xff, (ds->ds_pcbb.pcbb4>>8)&0xff,
X ds->ds_pcbb.pcbb6&0xff, (ds->ds_pcbb.pcbb6>>8)&0xff);
X bcopy((caddr_t)&ds->ds_pcbb.pcbb2, (caddr_t)ds->ds_addr,
X sizeof (ds->ds_addr));
X sin = (struct sockaddr_in *)&ifp->if_addr;
X sin->sin_family = AF_INET;
X sin->sin_addr = arpmyaddr((struct arpcom *)0);
X ifp->if_init = deinit;
X ifp->if_output = deoutput;
X ifp->if_ioctl = deioctl;
X ifp->if_reset = dereset;
X ds->ds_deuba.ifu_flags = UBA_CANTWAIT;
X#ifdef notdef
X /* CAN WE USE BDP's ??? */
X ds->ds_deuba.ifu_flags |= UBA_NEEDBDP;
X#endif
X if_attach(ifp);
X}
X
X/*
X * Reset of interface after UNIBUS reset.
X * If interface is on specified uba, reset its state.
X */
Xdereset(unit, uban)
X int unit, uban;
X{
X register struct uba_device *ui;
X
X if (unit >= NDE || (ui = deinfo[unit]) == 0 || ui->ui_alive == 0 ||
X ui->ui_ubanum != uban)
X return;
X printf(" de%d", unit);
X deinit(unit);
X}
X
X/*
X * Initialization of interface; clear recorded pending
X * operations, and reinitialize UNIBUS usage.
X */
Xdeinit(unit)
X int unit;
X{
X register struct de_softc *ds = &de_softc[unit];
X register struct uba_device *ui = deinfo[unit];
X register struct dedevice *addr;
X register struct ifrw *ifrw;
X int s;
X register struct ifnet *ifp = &ds->ds_if;
X register struct sockaddr_in *sin;
X struct de_ring *rp;
X int incaddr;
X int csr0;
X
X sin = (struct sockaddr_in *)&ifp->if_addr;
X if (sin->sin_addr.s_addr == 0) /* if address still unknown */
X return;
X
X if (ifp->if_flags & IFF_RUNNING)
X goto justarp;
X if (de_ubainit(&ds->ds_deuba, ui->ui_ubanum,
X sizeof (struct ether_header), (int)btoc(ETHERMTU)) == 0) {
X printf("de%d: can't initialize\n", unit);
X ds->ds_if.if_flags &= ~IFF_UP;
X return;
X }
X ds->ds_ubaddr = uballoc(ui->ui_ubanum, INCORE_BASE(ds), INCORE_SIZE,0);
X addr = (struct dedevice *)ui->ui_addr;
X
X /* set the pcbb block address */
X incaddr = ds->ds_ubaddr + PCBB_OFFSET;
X addr->pcsr2 = incaddr & 0xffff;
X addr->pcsr3 = (incaddr >> 16) & 0x3;
X addr->pclow = CMD_GETPCBB;
X while ((addr->pcsr0 & PCSR0_INTR) == 0)
X ;
X csr0 = addr->pcsr0;
X addr->pchigh = csr0 >> 8;
X if (csr0 & PCSR0_PCEI)
X printf("de%d: pcbb failed, csr0=%b csr1=%b\n", ui->ui_unit,
X csr0, PCSR0_BITS, addr->pcsr1, PCSR1_BITS);
X
X /* set the transmit and receive ring header addresses */
X incaddr = ds->ds_ubaddr + UDBBUF_OFFSET;
X ds->ds_pcbb.pcbb0 = FC_WTRING;
X ds->ds_pcbb.pcbb2 = incaddr & 0xffff;
X ds->ds_pcbb.pcbb4 = (incaddr >> 16) & 0x3;
X
X incaddr = ds->ds_ubaddr + XRENT_OFFSET;
X ds->ds_udbbuf.b_tdrbl = incaddr & 0xffff;
X ds->ds_udbbuf.b_tdrbh = (incaddr >> 16) & 0x3;
X ds->ds_udbbuf.b_telen = sizeof (struct de_ring) / sizeof (short);
X ds->ds_udbbuf.b_trlen = NXMT;
X incaddr = ds->ds_ubaddr + RRENT_OFFSET;
X ds->ds_udbbuf.b_rdrbl = incaddr & 0xffff;
X ds->ds_udbbuf.b_rdrbh = (incaddr >> 16) & 0x3;
X ds->ds_udbbuf.b_relen = sizeof (struct de_ring) / sizeof (short);
X ds->ds_udbbuf.b_rrlen = NRCV;
X
X addr->pclow = CMD_GETCMD;
X while ((addr->pcsr0 & PCSR0_INTR) == 0)
X ;
X csr0 = addr->pcsr0;
X addr->pchigh = csr0 >> 8;
X if (csr0 & PCSR0_PCEI)
X printf("de%d: wtring failed, csr0=%b csr1=%b\n", ui->ui_unit,
X csr0, PCSR0_BITS, addr->pcsr1, PCSR1_BITS);
X
X /* initialize the mode - enable hardware padding */
X ds->ds_pcbb.pcbb0 = FC_WTMODE;
X /* let hardware do padding - set MTCH bit on broadcast */
X ds->ds_pcbb.pcbb2 = MOD_TPAD|MOD_HDX;
X addr->pclow = CMD_GETCMD;
X while ((addr->pcsr0 & PCSR0_INTR) == 0)
X ;
X csr0 = addr->pcsr0;
X addr->pchigh = csr0 >> 8;
X if (csr0 & PCSR0_PCEI)
X printf("de%d: wtmode failed, csr0=%b csr1=%b\n", ui->ui_unit,
X csr0, PCSR0_BITS, addr->pcsr1, PCSR1_BITS);
X
X /* set up the receive and transmit ring entries */
X ifrw = &ds->ds_deuba.ifu_w[0];
X for (rp = &ds->ds_xrent[0]; rp < &ds->ds_xrent[NXMT]; rp++) {
X rp->r_segbl = ifrw->ifrw_info & 0xffff;
X rp->r_segbh = (ifrw->ifrw_info >> 16) & 0x3;
X rp->r_flags = 0;
X ifrw++;
X }
X ifrw = &ds->ds_deuba.ifu_r[0];
X for (rp = &ds->ds_rrent[0]; rp < &ds->ds_rrent[NRCV]; rp++) {
X rp->r_slen = sizeof (struct de_buf);
X rp->r_segbl = ifrw->ifrw_info & 0xffff;
X rp->r_segbh = (ifrw->ifrw_info >> 16) & 0x3;
X rp->r_flags = RFLG_OWN; /* hang receive */
X ifrw++;
X }
X
X /* start up the board (rah rah) */
X s = splimp();
X ds->ds_rindex = ds->ds_xindex = ds->ds_xfree = 0;
X ds->ds_if.if_flags |= IFF_UP|IFF_RUNNING;
X destart(unit); /* queue output packets */
X addr->pclow = PCSR0_INTE; /* avoid interlock */
X addr->pclow = CMD_START | PCSR0_INTE;
X ds->ds_flags |= DSF_RUNNING;
X splx(s);
Xjustarp:
X if_rtinit(&ds->ds_if, RTF_UP);
X arpattach(&ds->ds_ac);
X arpwhohas(&ds->ds_ac, &sin->sin_addr);
X}
X
X/*
X * Setup output on interface.
X * Get another datagram to send off of the interface queue,
X * and map it to the interface before starting the output.
X */
Xdestart(unit)
X int unit;
X{
X int len;
X struct uba_device *ui = deinfo[unit];
X struct dedevice *addr = (struct dedevice *)ui->ui_addr;
X register struct de_softc *ds = &de_softc[unit];
X register struct de_ring *rp;
X struct mbuf *m;
X register int nxmit;
X
X /*
X * the following test is necessary, since
X * the code is not reentrant and we have
X * multiple transmission buffers.
X */
X if (ds->ds_flags & DSF_LOCK)
X return;
X for (nxmit = ds->ds_nxmit; nxmit < NXMT; nxmit++) {
X IF_DEQUEUE(&ds->ds_if.if_snd, m);
X if (m == 0)
X break;
X rp = &ds->ds_xrent[ds->ds_xfree];
X if (rp->r_flags & XFLG_OWN)
X panic("deuna xmit in progress");
X len = deput(&ds->ds_deuba.ifu_w[ds->ds_xfree], m);
X if (ds->ds_deuba.ifu_flags & UBA_NEEDBDP)
X UBAPURGE(ds->ds_deuba.ifu_uba,
X ds->ds_deuba.ifu_w[ds->ds_xfree].ifrw_bdp);
X rp->r_slen = len;
X rp->r_tdrerr = 0;
X rp->r_flags = XFLG_STP|XFLG_ENP|XFLG_OWN;
X
X ds->ds_xfree++;
X if (ds->ds_xfree == NXMT)
X ds->ds_xfree = 0;
X }
X if (ds->ds_nxmit != nxmit) {
X ds->ds_nxmit = nxmit;
X if (ds->ds_flags & DSF_RUNNING)
X addr->pclow = PCSR0_INTE|CMD_PDMD;
X }
X}
X
X/*
X * Command done interrupt.
X */
Xdeintr(unit)
X int unit;
X{
X struct uba_device *ui = deinfo[unit];
X register struct dedevice *addr = (struct dedevice *)ui->ui_addr;
X register struct de_softc *ds = &de_softc[unit];
X register struct de_ring *rp;
X short csr0;
X
X /* save flags right away - clear out interrupt bits */
X csr0 = addr->pcsr0;
X addr->pchigh = csr0 >> 8;
X
X
X ds->ds_flags |= DSF_LOCK; /* prevent entering destart */
X /*
X * if receive, put receive buffer on mbuf
X * and hang the request again
X */
X derecv(unit);
X
X /*
X * Poll transmit ring and check status.
X * Be careful about loopback requests.
X * Then free buffer space and check for
X * more transmit requests.
X */
X for ( ; ds->ds_nxmit > 0; ds->ds_nxmit--) {
X rp = &ds->ds_xrent[ds->ds_xindex];
X if (rp->r_flags & XFLG_OWN)
X break;
X ds->ds_if.if_opackets++;
X /* check for unusual conditions */
X if (rp->r_flags & (XFLG_ERRS|XFLG_MTCH|XFLG_ONE|XFLG_MORE)) {
X if (rp->r_flags & XFLG_ERRS) {
X /* output error */
X ds->ds_if.if_oerrors++;
X if (dedebug)
X printf("de%d: oerror, flags=%b tdrerr=%b (len=%d)\n",
X unit, rp->r_flags, XFLG_BITS,
X rp->r_tdrerr, XERR_BITS, rp->r_slen);
X } else if (rp->r_flags & XFLG_ONE) {
X /* one collision */
X ds->ds_if.if_collisions++;
X } else if (rp->r_flags & XFLG_MORE) {
X /* more than one collision */
X ds->ds_if.if_collisions += 2; /* guess */
X } else if (rp->r_flags & XFLG_MTCH) {
X /* received our own packet */
X ds->ds_if.if_ipackets++;
X deread(ds, &ds->ds_deuba.ifu_w[ds->ds_xindex],
X rp->r_slen - sizeof (struct ether_header));
X }
X }
X /* check if next transmit buffer also finished */
X ds->ds_xindex++;
X if (ds->ds_xindex == NXMT)
X ds->ds_xindex = 0;
X }
X ds->ds_flags &= ~DSF_LOCK;
X destart(unit);
X
X if (csr0 & PCSR0_RCBI) {
X printf("de%d: buffer unavailable\n", unit);
X addr->pclow = PCSR0_INTE|CMD_PDMD;
X }
X}
X
X/*
X * Ethernet interface receiver interface.
X * If input error just drop packet.
X * Otherwise purge input buffered data path and examine
X * packet to determine type. If can't determine length
X * from type, then have to drop packet. Othewise decapsulate
X * packet based on type and pass to type specific higher-level
X * input routine.
X */
Xderecv(unit)
X int unit;
X{
X register struct de_softc *ds = &de_softc[unit];
X register struct de_ring *rp;
X int len;
X
X rp = &ds->ds_rrent[ds->ds_rindex];
X while ((rp->r_flags & RFLG_OWN) == 0) {
X ds->ds_if.if_ipackets++;
X if (ds->ds_deuba.ifu_flags & UBA_NEEDBDP)
X UBAPURGE(ds->ds_deuba.ifu_uba,
X ds->ds_deuba.ifu_r[ds->ds_rindex].ifrw_bdp);
X len = (rp->r_lenerr&RERR_MLEN) - sizeof (struct ether_header)
X - 4; /* don't forget checksum! */
X /* check for errors */
X if ((rp->r_flags & (RFLG_ERRS|RFLG_FRAM|RFLG_OFLO|RFLG_CRC)) ||
X (rp->r_flags&(RFLG_STP|RFLG_ENP)) != (RFLG_STP|RFLG_ENP) ||
X (rp->r_lenerr & (RERR_BUFL|RERR_UBTO|RERR_NCHN)) ||
X len < ETHERMIN || len > ETHERMTU) {
X ds->ds_if.if_ierrors++;
X if (dedebug)
X printf("de%d: ierror, flags=%b lenerr=%b (len=%d)\n",
X unit, rp->r_flags, RFLG_BITS, rp->r_lenerr,
X RERR_BITS, len);
X } else
X deread(ds, &ds->ds_deuba.ifu_r[ds->ds_rindex], len);
X
X /* hang the receive buffer again */
X rp->r_lenerr = 0;
X rp->r_flags = RFLG_OWN;
X
X /* check next receive buffer */
X ds->ds_rindex++;
X if (ds->ds_rindex == NRCV)
X ds->ds_rindex = 0;
X rp = &ds->ds_rrent[ds->ds_rindex];
X }
X}
X
X/*
X * Pass a packet to the higher levels.
X * We deal with the trailer protocol here.
X */
Xderead(ds, ifrw, len)
X register struct de_softc *ds;
X struct ifrw *ifrw;
X int len;
X{
X struct ether_header *eh;
X struct mbuf *m;
X int off, resid;
X register struct ifqueue *inq;
X
X /*
X * Deal with trailer protocol: if type is PUP trailer
X * get true type from first 16-bit word past data.
X * Remember that type was trailer by setting off.
X */
X eh = (struct ether_header *)ifrw->ifrw_addr;
X eh->ether_type = ntohs((u_short)eh->ether_type);
X#define dedataaddr(eh, off, type) ((type)(((caddr_t)((eh)+1)+(off))))
X if (eh->ether_type >= ETHERPUP_TRAIL &&
X eh->ether_type < ETHERPUP_TRAIL+ETHERPUP_NTRAILER) {
X off = (eh->ether_type - ETHERPUP_TRAIL) * 512;
X if (off >= ETHERMTU)
X return; /* sanity */
X eh->ether_type = ntohs(*dedataaddr(eh, off, u_short *));
X resid = ntohs(*(dedataaddr(eh, off+2, u_short *)));
X if (off + resid > len)
X return; /* sanity */
X len = off + resid;
X } else
X off = 0;
X if (len == 0)
X return;
X
X /*
X * Pull packet off interface. Off is nonzero if packet
X * has trailing header; deget will then force this header
X * information to be at the front, but we still have to drop
X * the type and length which are at the front of any trailer data.
X */
X m = deget(&ds->ds_deuba, ifrw, len, off);
X if (m == 0)
X return;
X if (off) {
X m->m_off += 2 * sizeof (u_short);
X m->m_len -= 2 * sizeof (u_short);
X }
X switch (eh->ether_type) {
X
X#ifdef INET
X case ETHERPUP_IPTYPE:
X schednetisr(NETISR_IP);
X inq = &ipintrq;
X break;
X
X case ETHERPUP_ARPTYPE:
X arpinput(&ds->ds_ac, m);
X return;
X#endif
X default:
X m_freem(m);
X return;
X }
X
X if (IF_QFULL(inq)) {
X IF_DROP(inq);
X m_freem(m);
X return;
X }
X IF_ENQUEUE(inq, m);
X}
X
X/*
X * Ethernet output routine.
X * Encapsulate a packet of type family for the local net.
X * Use trailer local net encapsulation if enough data in first
X * packet leaves a multiple of 512 bytes of data in remainder.
X */
Xdeoutput(ifp, m0, dst)
X struct ifnet *ifp;
X struct mbuf *m0;
X struct sockaddr *dst;
X{
X int type, s, error;
X u_char edst[6];
X struct in_addr idst;
X register struct de_softc *ds = &de_softc[ifp->if_unit];
X register struct mbuf *m = m0;
X register struct ether_header *eh;
X register int off;
X
X switch (dst->sa_family) {
X
X#ifdef INET
X case AF_INET:
X idst = ((struct sockaddr_in *)dst)->sin_addr;
X if (!arpresolve(&ds->ds_ac, m, &idst, edst))
X return (0); /* if not yet resolved */
X off = ntohs((u_short)mtod(m, struct ip *)->ip_len) - m->m_len;
X /* need per host negotiation */
X if ((ifp->if_flags & IFF_NOTRAILERS) == 0)
X if (off > 0 && (off & 0x1ff) == 0 &&
X m->m_off >= MMINOFF + 2 * sizeof (u_short)) {
X type = ETHERPUP_TRAIL + (off>>9);
X m->m_off -= 2 * sizeof (u_short);
X m->m_len += 2 * sizeof (u_short);
X *mtod(m, u_short *) = htons((u_short)ETHERPUP_IPTYPE);
X *(mtod(m, u_short *) + 1) = htons((u_short)m->m_len);
X goto gottrailertype;
X }
X type = ETHERPUP_IPTYPE;
X off = 0;
X goto gottype;
X#endif
X
X case AF_UNSPEC:
X eh = (struct ether_header *)dst->sa_data;
X bcopy((caddr_t)eh->ether_dhost, (caddr_t)edst, sizeof (edst));
X type = eh->ether_type;
X goto gottype;
X
X default:
X printf("de%d: can't handle af%d\n", ifp->if_unit,
X dst->sa_family);
X error = EAFNOSUPPORT;
X goto bad;
X }
X
Xgottrailertype:
X /*
X * Packet to be sent as trailer: move first packet
X * (control information) to end of chain.
X */
X while (m->m_next)
X m = m->m_next;
X m->m_next = m0;
X m = m0->m_next;
X m0->m_next = 0;
X m0 = m;
X
Xgottype:
X /*
X * Add local net header. If no space in first mbuf,
X * allocate another.
X */
X if (m->m_off > MMAXOFF ||
X MMINOFF + sizeof (struct ether_header) > m->m_off) {
X m = m_get(M_DONTWAIT, MT_HEADER);
X if (m == 0) {
X error = ENOBUFS;
X goto bad;
X }
X m->m_next = m0;
X m->m_off = MMINOFF;
X m->m_len = sizeof (struct ether_header);
X } else {
X m->m_off -= sizeof (struct ether_header);
X m->m_len += sizeof (struct ether_header);
X }
X eh = mtod(m, struct ether_header *);
X eh->ether_type = htons((u_short)type);
X bcopy((caddr_t)edst, (caddr_t)eh->ether_dhost, sizeof (edst));
X /* DEUNA fills in source address */
X
X /*
X * Queue message on interface, and start output if interface
X * not yet active.
X */
X s = splimp();
X if (IF_QFULL(&ifp->if_snd)) {
X IF_DROP(&ifp->if_snd);
X splx(s);
X m_freem(m);
X return (ENOBUFS);
X }
X IF_ENQUEUE(&ifp->if_snd, m);
X destart(ifp->if_unit);
X splx(s);
X return (0);
X
Xbad:
X m_freem(m0);
X return (error);
X}
X
X/*
X * Routines supporting UNIBUS network interfaces.
X */
X
X/*
X * Init UNIBUS for interface on uban whose headers of size hlen are to
X * end on a page boundary. We allocate a UNIBUS map register for the page
X * with the header, and nmr more UNIBUS map registers for i/o on the adapter,
X * doing this for each receive and transmit buffer. We also
X * allocate page frames in the mbuffer pool for these pages.
X */
Xde_ubainit(ifu, uban, hlen, nmr)
X register struct deuba *ifu;
X int uban, hlen, nmr;
X{
X register caddr_t cp, dp;
X register struct ifrw *ifrw;
X int ncl;
X
X ncl = clrnd(nmr + CLSIZE) / CLSIZE;
X if (ifu->ifu_r[0].ifrw_addr)
X /*
X * If the first read buffer has a non-zero
X * address, it means we have already allocated core
X */
X cp = ifu->ifu_r[0].ifrw_addr - (CLBYTES - hlen);
X else {
X cp = m_clalloc(NTOT * ncl, MPG_SPACE);
X if (cp == 0)
X return (0);
X ifu->ifu_hlen = hlen;
X ifu->ifu_uban = uban;
X ifu->ifu_uba = uba_hd[uban].uh_uba;
X dp = cp + CLBYTES - hlen;
X for (ifrw = ifu->ifu_r; ifrw < &ifu->ifu_r[NRCV]; ifrw++) {
X ifrw->ifrw_addr = dp;
X dp += ncl * CLBYTES;
X }
X for (ifrw = ifu->ifu_w; ifrw < &ifu->ifu_w[NXMT]; ifrw++) {
X ifrw->ifrw_addr = dp;
X dp += ncl * CLBYTES;
X }
X }
X /* allocate for receive ring */
X for (ifrw = ifu->ifu_r; ifrw < &ifu->ifu_r[NRCV]; ifrw++) {
X if (de_ubaalloc(ifu, ifrw, nmr) == 0) {
X struct ifrw *if2;
X
X for (if2 = ifu->ifu_r; if2 < ifrw; if2++)
X ubarelse(ifu->ifu_uban, &if2->ifrw_info);
X goto bad;
X }
X }
X /* and now transmit ring */
X for (ifrw = ifu->ifu_w; ifrw < &ifu->ifu_w[NXMT]; ifrw++) {
X if (de_ubaalloc(ifu, ifrw, nmr) == 0) {
X struct ifrw *if2;
X
X for (if2 = ifu->ifu_w; if2 < ifrw; if2++)
X ubarelse(ifu->ifu_uban, &if2->ifrw_info);
X for (if2 = ifu->ifu_r; if2 < &ifu->ifu_r[NRCV]; if2++)
X ubarelse(ifu->ifu_uban, &if2->ifrw_info);
X goto bad;
X }
X }
X return (1);
Xbad:
X m_pgfree(cp, NTOT * ncl);
X ifu->ifu_r[0].ifrw_addr = 0;
X return(0);
X}
X
X/*
X * Setup either a ifrw structure by allocating UNIBUS map registers,
X * possibly a buffered data path, and initializing the fields of
X * the ifrw structure to minimize run-time overhead.
X */
Xstatic
Xde_ubaalloc(ifu, ifrw, nmr)
X struct deuba *ifu;
X register struct ifrw *ifrw;
X int nmr;
X{
X register int info;
X
X info =
X uballoc(ifu->ifu_uban, ifrw->ifrw_addr, nmr*NBPG + ifu->ifu_hlen,
X ifu->ifu_flags);
X if (info == 0)
X return (0);
X ifrw->ifrw_info = info;
X ifrw->ifrw_bdp = UBAI_BDP(info);
X ifrw->ifrw_proto = UBAMR_MRV | (UBAI_BDP(info) << UBAMR_DPSHIFT);
X ifrw->ifrw_mr = &ifu->ifu_uba->uba_map[UBAI_MR(info) + 1];
X return (1);
X}
X
X/*
X * Pull read data off a interface.
X * Len is length of data, with local net header stripped.
X * Off is non-zero if a trailer protocol was used, and
X * gives the offset of the trailer information.
X * We copy the trailer information and then all the normal
X * data into mbufs. When full cluster sized units are present
X * on the interface on cluster boundaries we can get them more
X * easily by remapping, and take advantage of this here.
X */
Xstruct mbuf *
Xdeget(ifu, ifrw, totlen, off0)
X register struct deuba *ifu;
X register struct ifrw *ifrw;
X int totlen, off0;
X{
X struct mbuf *top, **mp, *m;
X int off = off0, len;
X register caddr_t cp = ifrw->ifrw_addr + ifu->ifu_hlen;
X
X top = 0;
X mp = ⊤
X while (totlen > 0) {
X MGET(m, M_DONTWAIT, MT_DATA);
X if (m == 0)
X goto bad;
X if (off) {
X len = totlen - off;
X cp = ifrw->ifrw_addr + ifu->ifu_hlen + off;
X } else
X len = totlen;
X if (len >= CLBYTES) {
X struct mbuf *p;
X struct pte *cpte, *ppte;
X int x, *ip, i;
X
X MCLGET(p, 1);
X if (p == 0)
X goto nopage;
X len = m->m_len = CLBYTES;
X m->m_off = (int)p - (int)m;
X if (!claligned(cp))
X goto copy;
X
X /*
X * Switch pages mapped to UNIBUS with new page p,
X * as quick form of copy. Remap UNIBUS and invalidate.
X */
X cpte = &Mbmap[mtocl(cp)*CLSIZE];
X ppte = &Mbmap[mtocl(p)*CLSIZE];
X x = btop(cp - ifrw->ifrw_addr);
X ip = (int *)&ifrw->ifrw_mr[x];
X for (i = 0; i < CLSIZE; i++) {
X struct pte t;
X t = *ppte; *ppte++ = *cpte; *cpte = t;
X *ip++ =
X cpte++->pg_pfnum|ifrw->ifrw_proto;
X mtpr(TBIS, cp);
X cp += NBPG;
X mtpr(TBIS, (caddr_t)p);
X p += NBPG / sizeof (*p);
X }
X goto nocopy;
X }
Xnopage:
X m->m_len = MIN(MLEN, len);
X m->m_off = MMINOFF;
Xcopy:
X bcopy(cp, mtod(m, caddr_t), (unsigned)m->m_len);
X cp += m->m_len;
Xnocopy:
X *mp = m;
X mp = &m->m_next;
X if (off) {
X /* sort of an ALGOL-W style for statement... */
X off += m->m_len;
X if (off == totlen) {
X cp = ifrw->ifrw_addr + ifu->ifu_hlen;
X off = 0;
X totlen = off0;
X }
X } else
X totlen -= m->m_len;
X }
X return (top);
Xbad:
X m_freem(top);
X return (0);
X}
X
X/*
X * Map a chain of mbufs onto a network interface
X * in preparation for an i/o operation.
X * The argument chain of mbufs includes the local network
X * header which is copied to be in the mapped, aligned
X * i/o space.
X *
X * This routine is unlike if_wubaput in that pages are
X * actually switched, rather than the UNIBUS maps temporarily
X * remapped.
X */
Xdeput(ifrw, m)
X register struct ifrw *ifrw;
X register struct mbuf *m;
X{
X register struct mbuf *mp;
X register caddr_t cp;
X int cc;
X register caddr_t dp;
X register int i;
X int x;
X
X cp = ifrw->ifrw_addr;
X while (m) {
X dp = mtod(m, char *);
X if (claligned(cp) && claligned(dp) && m->m_len == CLBYTES) {
X struct pte *cpte, *ppte;
X int *ip;
X
X cpte = &Mbmap[mtocl(cp)*CLSIZE];
X ppte = &Mbmap[mtocl(dp)*CLSIZE];
X x = btop(cp - ifrw->ifrw_addr);
X ip = (int *)&ifrw->ifrw_mr[x];
X for (i = 0; i < CLSIZE; i++) {
X struct pte t;
X t = *ppte; *ppte++ = *cpte; *cpte = t;
X *ip++ =
X cpte++->pg_pfnum|ifrw->ifrw_proto;
X mtpr(TBIS, cp);
X cp += NBPG;
X mtpr(TBIS, dp);
X dp += NBPG;
X }
X } else {
X bcopy(mtod(m, caddr_t), cp, (unsigned)m->m_len);
X cp += m->m_len;
X }
X MFREE(m, mp);
X m = mp;
X }
X
X cc = cp - ifrw->ifrw_addr;
X return (cc);
X}
X#endif
X
X/*
X * Process an ioctl request.
X */
Xdeioctl(ifp, cmd, data)
X register struct ifnet *ifp;
X int cmd;
X caddr_t data;
X{
X register struct ifreq *ifr = (struct ifreq *)data;
X int s = splimp(), error = 0;
X
X switch (cmd) {
X
X case SIOCSIFADDR:
X if (ifp->if_flags & IFF_RUNNING)
X if_rtinit(ifp, -1); /* delete previous route */
X desetaddr(ifp, (struct sockaddr_in *)&ifr->ifr_addr);
X deinit(ifp->if_unit);
X break;
X
X default:
X error = EINVAL;
X }
X splx(s);
X return (error);
X}
X
Xdesetaddr(ifp, sin)
X register struct ifnet *ifp;
X register struct sockaddr_in *sin;
X{
X
X ifp->if_addr = *(struct sockaddr *)sin;
X ifp->if_net = in_netof(sin->sin_addr);
X ifp->if_host[0] = in_lnaof(sin->sin_addr);
X sin = (struct sockaddr_in *)&ifp->if_broadaddr;
X sin->sin_family = AF_INET;
X sin->sin_addr = if_makeaddr(ifp->if_net, INADDR_ANY);
X ifp->if_flags |= IFF_BROADCAST;
X}
~FUNKY STUFF~
echo extracting - if_dereg.h
sed 's/^X//' > if_dereg.h << '~FUNKY STUFF~'
X/*
X * DEC DEUNA interface
X */
Xstruct dedevice {
X union {
X short p0_w;
X char p0_b[2];
X } u_p0;
X#define pcsr0 u_p0.p0_w
X#define pclow u_p0.p0_b[0]
X#define pchigh u_p0.p0_b[1]
X short pcsr1;
X short pcsr2;
X short pcsr3;
X};
X
X/*
X * PCSR 0 bit descriptions
X */
X#define PCSR0_SERI 0x8000 /* Status error interrupt */
X#define PCSR0_PCEI 0x4000 /* Port command error interrupt */
X#define PCSR0_RXI 0x2000 /* Receive done interrupt */
X#define PCSR0_TXI 0x1000 /* Transmit done interrupt */
X#define PCSR0_DNI 0x0800 /* Done interrupt */
X#define PCSR0_RCBI 0x0400 /* Receive buffer unavail intrpt */
X#define PCSR0_FATI 0x0100 /* Fatal error interrupt */
X#define PCSR0_INTR 0x0080 /* Interrupt summary */
X#define PCSR0_INTE 0x0040 /* Interrupt enable */
X#define PCSR0_RSET 0x0020 /* DEUNA reset */
X#define PCSR0_CMASK 0x000f /* command mask */
X
X#define PCSR0_BITS "\20\20SERI\17PCEI\16RXI\15TXI\14DNI\13RCBI\11FATI\10INTR\7INTE\6RSET"
X
X/* bits 0-3 are for the PORT_COMMAND */
X#define CMD_NOOP 0x0
X#define CMD_GETPCBB 0x1 /* Get PCB Block */
X#define CMD_GETCMD 0x2 /* Execute command in PCB */
X#define CMD_STEST 0x3 /* Self test mode */
X#define CMD_START 0x4 /* Reset xmit and receive ring ptrs */
X#define CMD_BOOT 0x5 /* Boot DEUNA */
X#define CMD_PDMD 0x8 /* Polling demand */
X#define CMD_TMRO 0x9 /* Sanity timer on */
X#define CMD_TMRF 0xa /* Sanity timer off */
X#define CMD_RSTT 0xb /* Reset sanity timer */
X#define CMD_STOP 0xf /* Suspend operation */
X
X/*
X * PCSR 1 bit descriptions
X */
X#define PCSR1_XPWR 0x8000 /* Transceiver power BAD */
X#define PCSR1_ICAB 0x4000 /* Interconnect cabling BAD */
X#define PCSR1_STCODE 0x3f00 /* Self test error code */
X#define PCSR1_PCTO 0x0080 /* Port command timed out */
X#define PCSR1_ILLINT 0x0040 /* Illegal interrupt */
X#define PCSR1_TIMEOUT 0x0020 /* Timeout */
X#define PCSR1_POWER 0x0010 /* Power fail */
X#define PCSR1_RMTC 0x0008 /* Remote console reserved */
X#define PCSR1_STMASK 0x0007 /* State */
X
X/* bit 0-3 are for STATE */
X#define STAT_RESET 0x0
X#define STAT_PRIMLD 0x1 /* Primary load */
X#define STAT_READY 0x2
X#define STAT_RUN 0x3
X#define STAT_UHALT 0x5 /* UNIBUS halted */
X#define STAT_NIHALT 0x6 /* NI halted */
X#define STAT_NIUHALT 0x7 /* NI and UNIBUS Halted */
X
X#define PCSR1_BITS "\20\20XPWR\17ICAB\10PCTO\7ILLINT\6TIMEOUT\5POWER\4RMTC"
X
X/*
X * Port Control Block Base
X */
Xstruct de_pcbb {
X short pcbb0; /* function */
X short pcbb2; /* command specific */
X short pcbb4;
X short pcbb6;
X};
X
X/* PCBB function codes */
X#define FC_NOOP 0x00 /* NO-OP */
X#define FC_LSUADDR 0x01 /* Load and start microaddress */
X#define FC_RDDEFAULT 0x02 /* Read default physical address */
X#define FC_RDPHYAD 0x04 /* Read physical address */
X#define FC_WTPHYAD 0x05 /* Write physical address */
X#define FC_RDMULTI 0x06 /* Read multicast address list */
X#define FC_WTMULTI 0x07 /* Read multicast address list */
X#define FC_RDRING 0x08 /* Read ring format */
X#define FC_WTRING 0x09 /* Write ring format */
X#define FC_RDCNTS 0x0a /* Read counters */
X#define FC_RCCNTS 0x0b /* Read and clear counters */
X#define FC_RDMODE 0x0c /* Read mode */
X#define FC_WTMODE 0x0d /* Write mode */
X#define FC_RDSTATUS 0x0e /* Read port status */
X#define FC_RCSTATUS 0x0f /* Read and clear port status */
X#define FC_DUMPMEM 0x10 /* Dump internal memory */
X#define FC_LOADMEM 0x11 /* Load internal memory */
X#define FC_RDSYSID 0x12 /* Read system ID parameters */
X#define FC_WTSYSID 0x13 /* Write system ID parameters */
X#define FC_RDSERAD 0x14 /* Read load server address */
X#define FC_WTSERAD 0x15 /* Write load server address */
X
X/*
X * Unibus Data Block Base (UDBB) for ring buffers
X */
Xstruct de_udbbuf {
X short b_tdrbl; /* Transmit desc ring base low 16 bits */
X char b_tdrbh; /* Transmit desc ring base high 2 bits */
X char b_telen; /* Length of each transmit entry */
X short b_trlen; /* Number of entries in the XMIT desc ring */
X short b_rdrbl; /* Receive desc ring base low 16 bits */
X char b_rdrbh; /* Receive desc ring base high 2 bits */
X char b_relen; /* Length of each receive entry */
X short b_rrlen; /* Number of entries in the RECV desc ring */
X};
X
X/*
X * Transmit/Receive Ring Entry
X */
Xstruct de_ring {
X short r_slen; /* Segment length */
X short r_segbl; /* Segment address (low 16 bits) */
X char r_segbh; /* Segment address (hi 2 bits) */
X u_char r_flags; /* Status flags */
X u_short r_tdrerr; /* Errors */
X#define r_lenerr r_tdrerr
X short r_rid; /* Request ID */
X};
X
X#define XFLG_OWN 0x80 /* If 0 then owned by driver */
X#define XFLG_ERRS 0x40 /* Error summary */
X#define XFLG_MTCH 0x20 /* Address match on xmit request */
X#define XFLG_MORE 0x10 /* More than one entry required */
X#define XFLG_ONE 0x08 /* One collision encountered */
X#define XFLG_DEF 0x04 /* Transmit deferred */
X#define XFLG_STP 0x02 /* Start of packet */
X#define XFLG_ENP 0x01 /* End of packet */
X
X#define XFLG_BITS "\10\10OWN\7ERRS\6MTCH\5MORE\4ONE\3DEF\2STP\1ENP"
X
X#define XERR_BUFL 0x8000 /* Buffer length error */
X#define XERR_UBTO 0x4000 /* UNIBUS tiemout
X#define XERR_LCOL 0x1000 /* Late collision */
X#define XERR_LCAR 0x0800 /* Loss of carrier */
X#define XERR_RTRY 0x0400 /* Failed after 16 retries */
X#define XERR_TDR 0x03ff /* TDR value */
X
X#define XERR_BITS "\20\20BUFL\17UBTO\15LCOL\14LCAR\13RTRY"
X
X#define RFLG_OWN 0x80 /* If 0 then owned by driver */
X#define RFLG_ERRS 0x40 /* Error summary */
X#define RFLG_FRAM 0x20 /* Framing error */
X#define RFLG_OFLO 0x10 /* Message overflow */
X#define RFLG_CRC 0x08 /* CRC error */
X#define RFLG_STP 0x02 /* Start of packet */
X#define RFLG_ENP 0x01 /* End of packet */
X
X#define RFLG_BITS "\10\10OWN\7ERRS\6FRAM\5OFLO\4CRC\2STP\1ENP"
X
X#define RERR_BUFL 0x8000 /* Buffer length error */
X#define RERR_UBTO 0x4000 /* UNIBUS tiemout */
X#define RERR_NCHN 0x2000 /* No data chaining */
X#define RERR_MLEN 0x0fff /* Message length */
X
X#define RERR_BITS "\20\20BUFL\17UBTO\16NCHN"
X
X/* mode description bits */
X#define MOD_HDX 0x0001 /* Half duplex mode */
X#define MOD_LOOP 0x0004 /* Enable internal loopback */
X#define MOD_DTCR 0x0008 /* Disables CRC generation */
X#define MOD_DMNT 0x0200 /* Disable maintenance features */
X#define MOD_ECT 0x0400 /* Enable collision test */
X#define MOD_TPAD 0x1000 /* Transmit message pad enable */
X#define MOD_DRDC 0x2000 /* Disable data chaining */
X#define MOD_ENAL 0x4000 /* Enable all multicast */
X#define MOD_PROM 0x8000 /* Enable promiscuous mode */
X
Xstruct de_buf {
X struct ether_header db_head; /* header */
X char db_data[ETHERMTU]; /* packet data */
X int db_crc; /* CRC - on receive only */
X};
~FUNKY STUFF~
exit
More information about the Comp.unix
mailing list